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Asset Returns
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One-period simple return 4

If we hold an asset for one period, from t− 1 to t, the simple
gross return is given by:

1 +Rt =
Pt
Pt−1

or Pt = Pt−1(1 +Rt).

The one-period simple net return or simple return is

Rt =
Pt
Pt−1

− 1 =
Pt − Pt−1
Pt−1

=
∆Pt
Pt−1

.
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Multi-period simple return 6

If we hold an asset for k periods, from t− k to t, the k-period
simple gross return is given by:

1 +Rt[k] =
Pt
Pt−k

=
Pt
Pt−1

Pt−1
Pt−2

. . .
Pt−k+1

Pt−k

= (1 +Rt)(1 +Rt−1) . . . (1 +Rt−k+1)

=

k−1∏
j=0

(1 +Rt−j).

Similarly, the k-period net return is

Rt[k] =
Pt − Pt−k
Pt−k

=

k−1∏
j=0

(1 +Rt−j)− 1.



Multi-period simple return 7

Day Pt−1 Pt ∆Pt Rt Rt[k]

1 3031.24 3030.75 -0.49 -0.02% -0.02%
2 3030.75 2979.40 -51.35 -1.69% -1.71%
3 2979.40 2985.66 6.26 0.21% -1.50%
4 2985.66 2999.28 13.62 0.46% -1.05%
5 2999.28 3006.45 7.17 0.24% -0.82%

Table: One-period and multi-period simple returns



Average return 8

On average, what is the return per period?



Average return 9

Let R be the average return,

1 +Rt[k] = (1 +Rt)(1 +Rt−1) . . . (1 +Rt−k+1)

= (1 +R)(1 +R) . . . (1 +R)

= (1 +R)k

which yields

R = (1 +Rt[k])1/k − 1 =

k−1∏
j=0

(1 +Rt−j)

1/k

− 1.

If each period spans one year, then R is also called the
annualized return.



Effect of compounding 10

Suppose you are going to deposit $10,000 in a bank, which
offers you a 10% per annum interest rate and the following
compounding scheme:

1. Compounding every year, where the one-year interest rate
is 10%;

2. Compounding every 6 months, where the 6-month interest
rate is 10%/2 = 5%.

Which one should you choose?



Effect of compounding 11

Type
No. of

payments
Interest rate
per period

Total
value

Annual 1 10% $11000.00
Semiannual 2 5% $11025.00
Quarterly 4 2.5% $11038.13
Monthly 12 0.833% $11047.13
Weekly 52 0.192% $11050.65
Daily 365 0.027% $11051.56

Table: Values of a loan with 10% per annum interest rate



Effect of compounding 12

In general, if the bank gives in-
terest m times a year, you get

$10, 000×
(

1 +
10%

m

)m
.

What if m→∞?



Continuous compounding 13

Suppose the continuously compounded interest rate is rt, the
simple gross return, or the effective annual interest rate, is

1 +Rt = lim
m→∞

(
1 +

rt
m

)m
.

Taking logarithm, and by L’Hopital’s Rule

lim
m→∞

m ln
(

1 +
rt
m

)
= rt.

Therefore, 1 +Rt = ert , or rt = ln(1 +Rt), where rt is also
called the log return.



Continuously compounded returns 14

The one-period log return is given by

rt = ln(1 +Rt) = ln
Pt
Pt−1

= pt − pt−1

where pt = lnPt. The multi-period log return is given by

rt[k] = ln(1 +Rt[k]) = ln[(1 +Rt)(1 +Rt−1) . . . (1 +Rt−k+1)]

= ln(1 +Rt) + ln(1 +Rt−1) + · · ·+ ln(1 +Rt−k+1)

= rt + rt−1 + · · ·+ rt−k+1



Continuously compounded returns 15

Suppose the log-return is constant rt = r, and the price of an
asset at time 0 is P0, then

rt[t] = rt + · · ·+ r1 = t · r.

Moreover,

Pt = P0 · (1 +R1) . . . (1 +Rt)

= P0 · er . . . er

= P0 · er·t.

The asset price will be growing exponentially.



S&P 500 historical values 16



Logarithm of S&P 500 17



Log returns of S&P 500 18



Distribution of S&P 500 log returns 19



Review of Statistical Distributions



Joint density function 21

Suppose X and Y are two random variables with support
(−∞,∞), with parameters θ. We define the joint distribution
function as

FX,Y (x, y;θ) = P (X ≤ x, Y ≤ y;θ).

If the joint probability density function fX,Y (x, y;θ) exists, then

FX,Y (x, y;θ) =

∫ x

−∞

∫ y

−∞
fX,Y (w, z;θ)dzdw.



A simple example: Uniform distribution 22

Let X,Y be two random variables with a joint density function

fX,Y (x, y) =

{
1, if x ∈ [0, 1], y ∈ [0, 1]

0, otherwise.

Find
FX,Y (0.5, 0.8) = P (X ≤ 0.5, Y ≤ 0.8).



Conditional and marginal distribution 23

The conditional distribution of X given Y ≤ y is given by

FX|Y≤y(x;θ) =
P (X ≤ x, Y ≤ y;θ)

P (Y ≤ y;θ)
.

The conditional density is

fX|Y (x;θ|Y = y) =
fX,Y (x, y;θ)

fY (y;θ)

where the marginal density function fY (y;θ) is given by

fY (y;θ) =

∫ ∞
−∞

fX,Y (x, y;θ)dx.



A simple example (continued) 24

Let X,Y be two random variables with a joint density function

fX,Y (x, y) =

{
1, if x ∈ [0, 1], y ∈ [0, 1]

0, otherwise.

Find
FX|Y≤0.8(0.5) = P (X ≤ 0.5|Y ≤ 0.8).



Moments 25

The j-th moment of a random variable X is defined as

m′j = E
[
Xj
]

=

∫ ∞
−∞

xjf(x)dx.

Let µX = E [X] = m′1, the j-th centered moment of X is

mj = E
[
(X − µX)j

]
=

∫ ∞
−∞

(x− µX)jf(x)dx.



Moments 26

I The first moment is the mean, which measures the (average)
location of X.

µX = E [X]

The sample mean is

µ̂X =
1

T

T∑
t=1

xt

I The second centered moment is the variance, which measures the
dispersion of X around its mean.

σ2
X = E

[
(X − µX)2

]
The sample variance is

σ̂2
X =

1

T − 1

T∑
t=1

(xt − µ̂X)2



Moments 27

Suppose E [X] = µX , and var(X) = σ2X . Now let

Z =
X − µX
σX

.

Find E [Z] and var(Z).



Skewness 28

I The third centered moment is skewness, which measures
the degree of asymmetry in the distribution of X.

S(X) = E
[

(X − µX)3

σ3X

]
The sample skewness is

Ŝ(X) =
1

(T − 1)σ̂3X

T∑
t=1

(xt − µ̂X)3



Skewness 29



Kurtosis 30

I The fourth centered moment is kurtosis, which measures
the fatness of the tails of the distribution of X.

K(X) = E
[

(X − µX)4

σ4X

]
The sample kurtosis is

K̂(X) =
1

(T − 1)σ̂4X

T∑
t=1

(xt − µ̂X)4



Kurtosis 31



A simple example (continued) 32

Let X be a random variable with a density function

fX(x) =

{
1, if x ∈ [0, 1]

0, otherwise.

Find the mean, variance, skewness and kurtosis of X.



Normal distribution 33

Suppose X ∼ N (µ, σ2), then its density function is

fX(x;µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
The population moments are

Mean Variance Skewness Kurtosis

µ σ2 0 3



Normality test 34

A random variable with normal distribution has skewness 0 and
kurtosis 3. Moreover, asymptotically,

Ŝ(x)
d−→ N

(
0,

6

T

)
, K̂(x)

d−→ N
(

3,
24

T

)
.

The hypothesis of normality can be tested using the t-statistics

tS =
Ŝ(x)√

6/T
, tK =

K̂(x)− 3√
24/T

.



Normality test 35

Alternatively, one can also use the Jarque and Bera (JB) test
statistic

JB(x) =
Ŝ(x)2

6/T
+

[K̂(x)− 3]2

24/T

d−→ χ2
2



Summary statistics of S&P 500 returns 36

Sample
moments

t-stat
95% Critical

values
Reject
H0

Mean 0.704 - - -
Variance 17.268 - - -
Skewness -0.450 -5.313 (-1.96, 1.96) X
Kurtosis 5.157 12.727 (-1.96, 1.96) X

JB Statistic 190 - 5.99 X



Normal distribution 37

Problems of using the normal distribution:

1. The lower bound of the simple return is -1, but the support
of the normal distribution has no lower bound.

2. If Rt is normally distributed, then Rt[k] is not normally
distributed.

3. Empirical asset returns tend to have positive excess
kurtosis.



Log-normal distribution 38

If we assume rt = ln(1 +Rt) ∼ N (µ, σ2), then we say Rt is
log-normally distributed. In this case,

E [Rt] = eµ+
σ2

2 − 1, var(Rt) = e2µ+σ
2
[eσ

2 − 1]

If Rt is log-normally distributed with mean and variance m1

and m2, then we can show that

µ = ln

(
m1 + 1√

1 +m2/(1 +m1)2

)
, σ2 = ln

(
1 +

m2

(1 +m1)2

)
.



Summary statistics of S&P 500 log returns 39

Sample
moments

t-stat
95% Critical

values
Reject
H0

Mean 0.615 - - -
Variance 17.484 - - -
Skewness -0.712 -8.401 (-1.96, 1.96) X
Kurtosis 5.877 16.982 (-1.96, 1.96) X

JB Statistic 359 - 5.99 X



Log-normal distribution 40

Advantage of using the log-normal distribution

1. rt[k] is the sum of normally distributed random variables
and is still normally distributed.

2. There is no lower bound for rt and Rt = ert − 1 ≥ 0 is still
satisfied.

Problem of using the log-normal distribution

1. Empirical asset log returns tend to have positive excess
kurtosis.



Scale mixture of normal distribution 41

The log-return rt follows a scale mixture of normal distribution
if rt ∼ N (µ, σ2), where σ2 follows a positive distribution. For
example,

rt ∼ XtN (µ, σ21) + (1−Xt)N (µ, σ22)

where Xt is a Bernoulli random variable such that
P (Xt = 1) = α and P (Xt = 0) = 1− α, with 0 < α < 1. Here
σ21 is small and σ22 is relatively large.



Scale mixture of normal distribution 42

Advantage of using the scale mixture of normal distribution:

1. It maintains the tractability of normal.

2. Higher order moments are still finite.

3. It can capture the excess kurtosis.

Problem of using the scale mixture of normal distribution:

1. It is hard to estimate the mixture parameter α.



Empirical density of S&P 500 43



VaR and Expected Shortfall



Value at risk (VaR) 45

What is the potential for loss of an asset with a certain
probability?



Value at risk (VaR) 46

The VaR is the potential loss that happens with a specified
probability. Let ∆V be the change in values of an asset, then
VaR is defined as

P (∆V ≤ V aRα) = F (V aRα) = α

where F (·) is the cumulative distribution function (CDF) of
∆V .



Value at risk (VaR) 47

The α-VaR can be obtained as the α-quantile of ∆V , i.e.,

V aRα = inf{∆V |F (∆V ) ≥ α}

If ∆V ∼ N (µ, σ2), then

V aRα = µ+ σΦ−1(α),

where Φ−1(α) is the inverse CDF of a standard normal
distribution.



Value at risk (VaR) 48



Value at risk (VaR) 49



Value at risk (VaR) 50



Expected shortfall 51

VaR only tells you that with α% chance, you can loss more
than V aRα, but it does not tell you how much you can loss.
Consider the following extreme case:



Expected shortfall 52

The expected shortfall at α% level is the expected return on the
portfolio/an asset in the worst α% of cases, i.e.,

ESα(∆V ) = E [∆V |∆V ≤ V aRα] .

The expected shortfall is therefore the average loss given that
the loss exceeds the VaR. Importantly, it uses the whole tail of
the distribution instead of just a single quantile.
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