

### 151163A - Financial Econometrics

IIa. Stationary Processes: Stationarity and Linear Process

## Stochastic Processes

A stochastic process  $\{X_t, t \in \mathcal{T}\}$  is a collection, or a family of random variables ordered by the time index  $t \in \mathcal{T}$ .

The expected value and the (auto)covariance are given by

$$\mathbb{E}[X_t] = \mu_t cov(X_t, X_{t-h}) = \mathbb{E}[(X_t - \mu_t)(X_{t-h} - \mu_{t-h})] = \gamma_X(t, h).$$

In particular, the variance of  $X_t$  is

$$\gamma_X(t,0) = \operatorname{var}(X_t) = \mathbb{E}\left[ (X_t - \mu_t)^2 \right].$$

The autocorrelation is defined as

$$\rho_X(t,h) = \frac{\text{cov}(X_t, X_{t-h})}{\sqrt{\text{var}(X_t) \text{var}(X_{t-h})}} = \frac{\gamma_X(t,h)}{\sqrt{\gamma_X(t,0)\gamma_X(t-h,0)}}$$



### Main challenges in studying stochastic processes:

- $\triangleright$  Future observations are not available at time t.
- ▶ At every time period, we observe only *one* realization out of the set of all possible outcomes.

Ergodicity

(

#### Definition

A stochastic process is ergodic if its time average is the same as its average over the probability space.

A time series  $\{X_t\}$  is said to be strictly stationary if the joint distribution of  $(X_{t_1}, \ldots, X_{t_k})$  is identical to that of  $(X_{t_1+t}, \ldots, X_{t_k+t})$  for all positive integers t and k.

A time series  $\{X_t\}$  is said to be weakly stationary if both the mean of  $X_t$  and the covariance between  $X_t$  and  $X_{t-h}$  are finite and time-invariant for all integers h, i.e.,

$$\mathbb{E}[X_t] = \mu$$
$$cov(X_t, X_{t-h}) = \gamma_X(h)$$

Moreover, we can write the autocorrelation as

$$\rho_X(h) = \frac{\operatorname{cov}(X_t, X_{t-h})}{\sqrt{\operatorname{var}(X_t)\operatorname{var}(X_{t-h})}} = \frac{\gamma_X(h)}{\gamma_X(0)}.$$



Consider the stochastic process

$$X_t = e_t + e_{t-1}, \qquad e_t \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1).$$

Find the expected value and autocovariance of  $X_t$ . Is  $X_t$  weakly stationary? Is  $X_t$  strictly stationary?

# Linear Process

A time series  $X_t$  is said to be a linear process if it has finite variance and can be written as

$$X_t = \mu_X + \sum_{j=0}^{\infty} b_j \varepsilon_{t-j}, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2)$$
 (1)

where  $\varepsilon_t$  is called the *shock* or *innovation* at time t.

Since  $\varepsilon_t$  is iid with mean 0,

▶ the mean is

$$\mathbb{E}\left[X_{t}\right] = \mu_{X}$$

▶ the variance is

$$var(X_t) = \gamma_X(0) = \sigma^2 \sum_{j=0}^{\infty} b_j^2$$

If  $X_t$  is weakly stationary, then  $\operatorname{var}(X_t) < \infty$  and  $\{b_j^2\}$  must be a convergent sequence, i.e.,  $b_j^2 \to 0$  as  $j \to \infty$ . In other words, the impact of the shock  $\varepsilon_{t-h}$  on  $X_t$  vanishes as j increases.

Since  $\varepsilon_t$  is iid with mean 0,

▶ the autocovariance is

$$\gamma_X(h) = \text{cov}(X_t, X_{t-h}) = \sigma^2 \sum_{j=0}^{\infty} b_j b_{j+h}$$

▶ the autocorrelation is

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \frac{\sum_{j=0}^{\infty} b_j b_{j+h}}{\sum_{j=0}^{\infty} b_j^2}$$

If  $X_t$  is weakly stationary, then  $b_j \to 0$  as  $j \to \infty$  and  $\rho_X(h) \to 0$  as  $h \to \infty$  for a stationary process.

A time-series  $X_t$  is called a white noise if  $\{X_t\}$  is a sequence of independent and identically distributed (iid) random variables with finite mean  $\mu_X$  and variance  $\sigma_X^2$ .

If  $X_t \stackrel{\text{iid}}{\sim} (\mu_X, \sigma_X^2)$ , then

- $\blacktriangleright \mathbb{E}\left[X_{t}\right] = \mu_{X},$
- $var(X_t) = \sigma_X^2,$
- $\rho_X(h) = 0 \text{ for all } h > 0.$

Therefore,  $X_t$  is weakly stationary.

The lag h sample autocorrelation of  $X_t$  is defined as

$$\widehat{\rho}_X(h) = \frac{\sum_{t=h+1}^T (X_t - \overline{X})(X_{t-h} - \overline{X})}{\sum_{t=1}^T (X_t - \overline{X})^2}$$

where  $\overline{X} = T^{-1} \sum_{t=1}^{T} X_t$  is the sample mean of  $X_t$ . If  $X_t$  is an iid sequence with finite variance, then

$$\widehat{\rho}_X(h) \xrightarrow{d} \mathcal{N}(0, T^{-1}), \qquad h = 1, 2, \dots$$

We can therefore test whether  $X_t$  is iid by the t-test.

Alternatively, we can test the joint hypothesis

$$\begin{cases} H_0: \rho_X(1) = \dots = \rho_X(m) = 0 \\ H_1: \rho_X(i) \neq 0 \text{ for some } i \in \{1, \dots, m\} \end{cases}$$

with the statistic

$$Q(m) = T(T+2) \sum_{j=1}^{m} \frac{\widehat{\rho}_X(j)^2}{T-j}$$

Under  $H_0$ ,  $Q(m) \xrightarrow{d} \chi_m^2$ .





| $\overline{m}$ | Q(m)  | $\chi_m^2(95\%)$ | $\chi_m^2(99\%)$ | Reject $H_0$ ? |
|----------------|-------|------------------|------------------|----------------|
| 1              | 12.30 | 3.84             | 6.63             | $\checkmark$   |
| 2              | 12.74 | 5.99             | 9.21             | $\checkmark$   |
| 3              | 22.36 | 7.81             | 11.34            | $\checkmark$   |
| 4              | 22.71 | 9.49             | 13.28            | $\checkmark$   |
| 5              | 26.85 | 11.07            | 15.09            | $\checkmark$   |
| 6              | 28.59 | 12.59            | 16.81            | $\checkmark$   |
| 7              | 28.66 | 14.07            | 18.48            | $\checkmark$   |
| 8              | 30.80 | 15.51            | 20.09            | $\checkmark$   |
| 9              | 35.70 | 16.92            | 21.67            | $\checkmark$   |
| 10             | 35.81 | 18.31            | 23.21            | $\checkmark$   |