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Estimation of an AR(p) process 2

Conditional on the first p observations, we have

Xt = a0 + a1Xt−1 + · · ·+ apXt−p + εt, t = p+ 1, . . . , T

which is in form of a multiple linear regression and can be
estimated by the least-squares method.
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Linear regression 5

Suppose

yi = β′Xi + ei =

p∑
k=1

βkXki + ei, i = 1, . . . , N.

Then, we can estimate β by solving the optimization problem

β̂ = arg min
β

N∑
i=1

(yi − β′Xi)
2.

The solution is given by

β̂ =

(
N∑
i=1

XiX
′
i

)−1( N∑
i=1

Xiyi

)



Estimation of an AR(p) process 6

We solve the optimization problem

(â0, . . . , âp) = arg min
{a0,...,ap}

T∑
t=p+1

(Xt − a0 − a1Xt−1 − · · · − apXt−p)
2

which yields

â =

 T∑
t=p+1

ZtZ
′
t

−1  T∑
t=p+1

ZtXt


where Zt = (1, Xt−1, . . . , Xt−p)

′.



Estimation of an AR(p) process 7

The fitted model is

X̂t = â0 + â1Xt−1 + · · ·+ âpXt−p

and the associated residual is

ε̂t = Xt − X̂t.

The variance of the residuals is given by

σ̂2 =
1

T − 2p− 1

T∑
t=p+1

ε̂2t .



Fitted value 8
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Order Selection



Model checking 11

If the model is adequate, then the residual series should behave
as a white noise. One can check if the autocorrelation function
of the residual series is different from zero. One can also apply
the Portmanteau test,

Q(m) = T (T + 2)

m∑
j=1

ρ̂ε̂(j)
2

T − j

If the residual series shows serial correlation (i.e., non-zero
autocorrelation), then one may need to increase the AR order.



Model checking 12

Simulate four series:

Xt = 0.2Xt−1 + εt

Xt = 0.2Xt−1 + 0.2Xt−2 + εt

Xt = 0.2Xt−1 + 0.2Xt−2 + 0.2Xt−3 + εt

Xt = 0.2Xt−1 + 0.2Xt−2 + 0.2Xt−3 + 0.2Xt−4 + εt

for t = 1, . . . , 1000. Then we estimate an AR(1) model and find
the autocorrelations of the residual series.



Autocorrelation of residual series 13



Partial autocorrelation function 14

The partial autocorrelation function (PACF) can be obtained
by consecutively estimating the following models

Xt = a0,1 + a1,1Xt−1 + e1t

Xt = a0,2 + a1,2Xt−1 + a2,2Xt−2 + e2t

Xt = a0,3 + a1,3Xt−1 + a2,3Xt−2 + a3,3Xt−3 + e3t
...

The estimates â1,1, â2,2, â3,3, and so on, are the sample PACF.



Partial autocorrelation function 15

For a stationary normal AR(p) process, it can be shown that
the sample PACF has the following properties:

I âp,p converges to ap as the sample size T goes to infinity.

I âj,j converges to zero for all j > p.

I The asymptotic variance of âj,j is 1/T for all j > p.

Therefore, for an AR(p) process, the sample PACF cuts off at
lag p.



Partial autocorrelation function 16



Information criteria 17

Two well-known information criteria are

AIC(j) = ln(σ̃2j ) +
2j

T

BIC(j) = ln(σ̃2j ) +
j lnT

T

where

σ̃2j =
1

T − j

T∑
t=j+1

εt(j)
2

and εt(j) is the residual of a fitted AR(j) model.



Information criteria 18

The first term ln(σ̃2j ) measures how well an AR(j) model fits
the data, while the second term is the penalty term, which
penalizes model complexity.

I If j < p, increasing j can significantly improve model fit,
thus reducing AIC and BIC.

I if j > p, increasing j does not improve model fit, therefore
AIC and BIC become larger due to the penalty term.

Therefore, we choose j such that AIC or BIC is minimized.



AIC 19

j p = 1 p = 2 p = 3 p = 4

0 0.011 0.066 0.187 0.450
1 -0.041 -0.012 0.052 0.150
2 -0.039 -0.039 -0.002 0.045
3 -0.037 -0.037 -0.036 -0.010
4 -0.036 -0.034 -0.033 -0.034
5 -0.033 -0.033 -0.032 -0.032
6 -0.033 -0.034 -0.033 -0.032
7 -0.032 -0.032 -0.032 -0.030
8 -0.030 -0.030 -0.030 -0.030
9 -0.029 -0.028 -0.028 -0.028
10 -0.030 -0.028 -0.027 -0.026



BIC 20

j p = 1 p = 2 p = 3 p = 4

0 0.011 0.066 0.187 0.450
1 -0.037 -0.007 0.057 0.155
2 -0.029 -0.029 0.007 0.055
3 -0.022 -0.022 -0.021 0.005
4 -0.016 -0.015 -0.014 -0.015
5 -0.009 -0.008 -0.007 -0.007
6 -0.004 -0.004 -0.003 -0.003
7 0.002 0.002 0.003 0.004
8 0.009 0.009 0.009 0.009
9 0.015 0.016 0.016 0.016
10 0.019 0.021 0.022 0.023



AIC and BIC 21



Forecasting



One-step-ahead forecast 23

From the AR(p) model, we have

Xt+1 = a0 + a1Xt + · · ·+ apXt+1−p + εt+1.

The optimal point forecast is given by the conditional
expectation

X̂t(1) = E [Xt+1|It] = a0 + a1Xt + · · ·+ apXt+1−p.

where It = {Xt, Xt−1, . . . }. The estimation error is

ε̂t(1) = Xt+1 − X̂t(1) = εt+1.



One-step-ahead forecast 24

The variance of the forecast error is var(ε̂t(1)) = var(εt+1) = σ2.
If εt+1 ∼ N (0, σ2), then the 95% one-step-ahead interval
forecast is

X̂t(1)± 1.96σ



Two-step-ahead forecast 25

From the AR(p) model, we have

Xt+2 = a0 + a1Xt+1 + a2Xt + · · ·+ apXt+2−p + εt+2.

The optimal point forecast is given by

X̂t(2) = E [Xt+2|Xt, . . . ]

= a0 + a1E [Xt+1|Xt, . . . ] + a2Xt + · · ·+ apXt+2−p

= a0 + a1X̂t(1) + a2Xt + · · ·+ apXt+2−p



Two-step-ahead forecast 26

The estimation error is

ε̂t(2) = Xt+2 − X̂t(2)

= a1(Xt+1 − X̂t(1)) + εt+2

= a1εt+1 + εt+2

Therefore, the variance of the forecast error is

var(ε̂t(2)) = (1 + a21)σ
2

Notice that var(ε̂t(1)) ≤ var(ε̂t(2)) ≤ var(Xt).



h-step-ahead forecast 27

In general, we have

Xt+h = a0 + a1Xt+h−1 + · · ·+ apXt+h−p + εt+h.

The h-step-ahead forecast is given by

X̂t(h) = a0 + a1X̂t(h− 1) + · · ·+ apX̂t(h− p),

where X̂t(i) = Xt+i if i ≤ 0.



Example 28

Consider the AR(1) model

Xt = 1 + 0.5Xt−1 + εt, εt
iid∼
(
0, σ2

)
.

Find the h-step-ahead forecast and the respective variances of
the forecast errors for h = 1, 2. What if h→∞?
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