

151163A - Financial Econometrics

IId. Stationary Processes: MA and ARMA Models

CHEUNG Ying Lun
Capital University of Economics and Business

Moving Average Model

Consider the stochastic process

$$X_t = (1 - b_1)a_0 + \varepsilon_t - b_1\varepsilon_{t-1}.$$

Since X_t is just a weighted average of the current and past shocks, it is called a *moving-average* process with order 1, or an MA(1) process.

Re-arranging the MA(1) process, we have

$$\varepsilon_t + a_0 = b_1(\varepsilon_{t-1} + a_0) + X_t = \sum_{j=0}^{\infty} b_1^j X_{t-j}$$

We say X_t is *invertible* if $|b_1| < 1$, so that the realization from the infinite past has little influence on the current shock.

In general, an MA(q) process is given by

$$X_t = \mu_X + \varepsilon_t - b_1 \varepsilon_{t-1} - \dots - b_q \varepsilon_{t-q}$$

= $\mu_X + (1 - b_1 L - \dots - b_q L^q) \varepsilon_t$

where $\varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2)$.

Obviously, by the iid assumption on ε_t ,

$$\mathbb{E}[X_t] = \mu_X$$

$$\text{var}(X_t) = (1 + b_1^2 + \dots + b_q^2)\sigma^2$$

$$\gamma_X(h) = \begin{cases} (-b_h + b_{h+1}b_1 + \dots + b_q b_{q-h})\sigma^2, & h \le q \\ 0, & h > q \end{cases}$$

Since they are all time-invariant, an MA(q) process is weakly stationary.

The estimation of an MA process is typically done by the $maximum-likelihood\ estimation\ (MLE)$. Consider the MA(1) process

$$X_t = \mu_X + \varepsilon_t - b_1 \varepsilon_{t-1},$$

and assuming that $\varepsilon_0 = 0$, then

$$\begin{split} \varepsilon_1 &= X_1 - \mu_X \\ \varepsilon_2 &= X_2 - \mu_X + b_1 \varepsilon_1 \\ \varepsilon_3 &= X_3 - \mu_X + b_1 \varepsilon_2 \\ &\vdots \end{split}$$

Assuming further that ε_t is normally distributed, the likelihood function is given by

$$\mathcal{L}(\mu_X, b_1, \sigma; X_1, \dots, X_T) = (2\pi\sigma^2)^{T/2} \exp\left(-\frac{\sum_{t=1}^T \varepsilon_t^2}{2\sigma^2}\right)$$

The coefficients can be obtained by maximizing the above likelihood function.

Consider an MA(1) process

$$X_t = \mu_X + \varepsilon_t - b_1 \varepsilon_{t-1}.$$

Then the h-step forecasts are

$$\widehat{X}_t(1) = \mathbb{E}\left[X_{t+1}|X_t,\dots\right] = \mu_X - b_1 \varepsilon_t$$

$$\widehat{X}_t(2) = \mathbb{E}\left[X_{t+2}|X_t,\dots\right] = \mu_X$$

The process reverts to its mean after two steps.

Consider an MA(q) process

$$X_t = \mu_X + \varepsilon_t - b_1 \varepsilon_{t-1} - \dots - b_q \varepsilon_{t-q}.$$

Then the h-step forecast is

$$\widehat{X}_t(h) = \mu_X - \begin{cases} 0, & h > q \\ \sum_{j=h}^q b_j \varepsilon_{t+h-j}, & h = 1, \dots, q \end{cases}$$

The variance of the forecast error is

$$\operatorname{var}(X_{t+h} - \widehat{X}_t(h)) = \begin{cases} (1 + b_1^2 + \dots + b_q^2)\sigma^2, & h > q \\ \sum_{j=0}^{h-1} b_j^2 \sigma^2 & h = 1, \dots, q \end{cases}$$

where $b_0 = 1$.

Procedure of forecasting an MA process:

- 1. Find the order q of the MA process with the autocorrelation function.
- 2. Estimate the coefficients $\{b_i\}$ by MLE
- 3. Obtain the residuals ε_t recursively, assuming the initial shocks $\varepsilon_0, \varepsilon_{-1}, \ldots$
- 4. Obtain the forecast $\hat{X}_t(h)$ by the equation in the last slide.

ARMA Model

The autoregressive moving-average (ARMA) model combines an AR and MA model. For example, an ARMA(1,1) model is

$$X_t - a_1 X_{t-1} = a_0 + \varepsilon_t - b_1 \varepsilon_{t-1}, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2), \qquad (1)$$

where $a_1 \neq b_1$.

If X_t is weakly stationary, then taking expectation of Eq.(1),

$$\mu_X - a_1 \mu_X = a_0 \implies \mu_X = \frac{a_0}{1 - a_1}.$$

Rewriting Eq.(1) as

$$X_t = a_0 + a_1 X_{t-1} + \varepsilon_t - b_1 \varepsilon_{t-1},$$

and computing the variance of both sides,

$$\operatorname{var}(X_t) = a_1^2 \operatorname{var}(X_{t-1}) + \sigma^2 + b_1^2 \sigma^2 - 2a_1 b_1 \mathbb{E}\left[X_{t-1} \varepsilon_{t-1}\right]$$
$$= \frac{(1 - 2a_1 b_1 + b_1^2) \sigma^2}{1 - a_1^2}$$

which requires $|a_1| < 1$.

To find the autocovariance of X_t , we first write the model as

$$X_t - \mu_X = a_1(X_{t-1} - \mu_X) + \varepsilon_t - b_1 \varepsilon_{t-1}.$$

Then we multiply $X_{t-h} - \mu_X$ to the equation and take expectation,

$$\gamma_X(1) = a_1 \gamma_X(0) - b_1 \sigma^2, \qquad h = 1$$
 $\gamma_X(h) = a_1 \gamma_X(h-1), \qquad h > 1.$

Similarly, the autocorrelation function (ACF) is given by

$$\rho_X(1) = a_1 - \frac{b_1 \sigma^2}{\gamma_X(0)}, \qquad \rho_X(h) = a_1 \rho_X(h-1), \ h > 1.$$

In general, an ARMA(p,q) process is written as

$$X_t = a_0 + a_1 X_{t-1} + \dots + a_p X_{t-p} + \varepsilon_t - b_1 \varepsilon_{t-1} - \dots - b_q \varepsilon_{t-q},$$

where $\varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2)$. Using the lag polynomial representation,

$$(1 - a_1 L - \dots - a_p L^p)(X_t - \mu_X) = (1 - b_1 L - \dots - b_q L^q)\varepsilon_t$$

where

$$\mu_X = \frac{a_0}{1 - a_1 - \dots - a_p}.$$

The stationarity condition is the same as that of an AR(p) process.

Assuming $\varepsilon_j = 0$ for all $j \leq p$, we have

$$\varepsilon_{p+1} = X_{p+1} - a_1 X_p - \dots - a_p X_1 - a_0$$

$$\varepsilon_{p+2} = X_{p+2} - a_1 X_{p+1} - \dots - a_p X_2 - a_0 + b_1 \varepsilon_{p+1}$$

$$\vdots$$

Assuming again that $\varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$, we can estimate the coefficients by MLE.

Let $\tilde{\sigma}^2(p,q)$ be the sample variance of the residuals by fitting an ARMA(p,q) process. Then one can select the order by minimizing the criteria functions

$$AIC(p,q) = \ln(\widetilde{\sigma}^2(p,q)) + \frac{2(p+q)}{T}$$
$$BIC(p,q) = \ln(\widetilde{\sigma}^2(p,q)) + \frac{(p+q)\ln T}{T}$$

Suppose both the AR and MA lag polynomials can be factored such that

$$(1 - \phi_1 L) \dots (1 - \phi_p L)(X_t - \mu_X) = (1 - \theta_1 L) \dots (1 - \theta_q L)\varepsilon_t.$$

If $|\phi_j| < 1$ for all j and $\phi_i \neq \theta_j$ for any i, j, we can represent an ARMA process as an MA(∞) process

$$X_t = \mu_X + (1 - \phi_1 L)^{-1} \dots (1 - \phi_p L)^{-1} (1 - \theta_1 L) \dots (1 - \theta_q L) \varepsilon_t$$
$$= \mu_X + \sum_{j=0}^{\infty} \omega_j \varepsilon_{t-j}$$

In this case, we say the process is *causal*.

Similarly, if $|\theta_j| < 1$ for all j, then we can represent an ARMA process as an AR(∞) process

$$(1 - \theta_1 L)^{-1} \dots (1 - \theta_q L)^{-1} (1 - \phi_1 L) \dots (1 - \phi_p L) (X_t - \mu_X)$$
$$= \left(1 - \sum_{j=1}^{\infty} \lambda_j L^j\right) (X_t - \mu_X) = \varepsilon_t.$$

In this case, we say the process is *invertible*.

Express the following ARMA(1,1) model as an MA(∞) process.

$$X_t = a_1 X_{t-1} + \varepsilon_t - b_1 \varepsilon_{t-1}, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2).$$