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Moving Average Model



MA(1) process 3

Consider the stochastic process

Xt = (1− b1)a0 + εt − b1εt−1.

Since Xt is just a weighted average of the current and past
shocks, it is called a moving-average process with order 1, or an
MA(1) process.



Invertibility 4

Re-arranging the MA(1) process, we have

εt + a0 = b1(εt−1 + a0) +Xt =

∞∑
j=0

bj1Xt−j

We say Xt is invertible if |b1| < 1, so that the realization from
the infinite past has little influence on the current shock.



An MA(q) process 5

In general, an MA(q) process is given by

Xt = µX + εt − b1εt−1 − · · · − bqεt−q
= µX + (1− b1L− · · · − bqLq)εt

where εt
iid∼
(
0, σ2

)
.



Moments of an MA(q) process 6

Obviously, by the iid assumption on εt,

E [Xt] = µX

var(Xt) = (1 + b21 + · · ·+ b2q)σ
2

γX(h) =

{
(−bh + bh+1b1 + · · ·+ bqbq−h)σ2, h ≤ q
0, h > q

Since they are all time-invariant, an MA(q) process is weakly
stationary.



Identifying the order of an MA process 7



Estimation of an MA process 8

The estimation of an MA process is typically done by the
maximum-likelihood estimation (MLE). Consider the MA(1)
process

Xt = µX + εt − b1εt−1,

and assuming that ε0 = 0, then

ε1 = X1 − µX
ε2 = X2 − µX + b1ε1

ε3 = X3 − µX + b1ε2
...



Estimation of an MA process 9

Assuming further that εt is normally distributed, the likelihood
function is given by

L(µX , b1, σ;X1, . . . , XT ) = (2πσ2)T/2 exp

(
−
∑T

t=1 ε
2
t

2σ2

)

The coefficients can be obtained by maximizing the above
likelihood function.



Forecasting an MA process 10

Consider an MA(1) process

Xt = µX + εt − b1εt−1.

Then the h-step forecasts are

X̂t(1) = E [Xt+1|Xt, . . . ] = µX − b1εt
X̂t(2) = E [Xt+2|Xt, . . . ] = µX

The process reverts to its mean after two steps.



Forecasting an MA process 11

Consider an MA(q) process

Xt = µX + εt − b1εt−1 − · · · − bqεt−q.

Then the h-step forecast is

X̂t(h) = µX −

{
0, h > q∑q

j=h bjεt+h−j , h = 1, . . . , q

The variance of the forecast error is

var(Xt+h − X̂t(h)) =

{
(1 + b21 + · · ·+ b2q)σ

2, h > q∑h−1
j=0 b

2
jσ

2 h = 1, . . . , q

where b0 = 1.



Forecasting an MA process 12

Procedure of forecasting an MA process:

1. Find the order q of the MA process with the
autocorrelation function.

2. Estimate the coefficients {bj} by MLE

3. Obtain the residuals εt recursively, assuming the initial
shocks ε0, ε−1, . . . .

4. Obtain the forecast X̂t(h) by the equation in the last slide.



Forecasting an MA process 13



ARMA Model



ARMA(1,1) model 15

The autoregressive moving-average (ARMA) model combines
an AR and MA model. For example, an ARMA(1,1) model is

Xt − a1Xt−1 = a0 + εt − b1εt−1, εt
iid∼
(
0, σ2

)
, (1)

where a1 6= b1.



Properties of an ARMA(1,1) process 16

If Xt is weakly stationary, then taking expectation of Eq.(1),

µX − a1µX = a0 =⇒ µX =
a0

1− a1
.



Properties of an ARMA(1,1) process 17

Rewriting Eq.(1) as

Xt = a0 + a1Xt−1 + εt − b1εt−1,

and computing the variance of both sides,

var(Xt) = a21 var(Xt−1) + σ2 + b21σ
2 − 2a1b1E [Xt−1εt−1]

=
(1− 2a1b1 + b21)σ

2

1− a21

which requires |a1| < 1.



Properties of an ARMA(1,1) process 18

To find the autocovariance of Xt, we first write the model as

Xt − µX = a1(Xt−1 − µX) + εt − b1εt−1.

Then we multiply Xt−h − µX to the equation and take
expectation,

γX(1) = a1γX(0)− b1σ2, h = 1

γX(h) = a1γX(h− 1), h > 1.

Similarly, the autocorrelation function (ACF) is given by

ρX(1) = a1 −
b1σ

2

γX(0)
, ρX(h) = a1ρX(h− 1), h > 1.



ARMA(p, q) process 19

In general, an ARMA(p, q) process is written as

Xt = a0 + a1Xt−1 + · · ·+ apXt−p + εt − b1εt−1 − · · · − bqεt−q,

where εt
iid∼
(
0, σ2

)
. Using the lag polynomial representation,

(1− a1L− · · · − apLp)(Xt − µX) = (1− b1L− · · · − bqLq)εt

where
µX =

a0
1− a1 − · · · − ap

.

The stationarity condition is the same as that of an AR(p)
process.



Estimation of an ARMA(p, q) process 20

Assuming εj = 0 for all j ≤ p, we have

εp+1 = Xp+1 − a1Xp − · · · − apX1 − a0
εp+2 = Xp+2 − a1Xp+1 − · · · − apX2 − a0 + b1εp+1

...

Assuming again that εt
iid∼ N

(
0, σ2

)
, we can estimate the

coefficients by MLE.



Order selection 21

Let σ̃2(p, q) be the sample variance of the residuals by fitting an
ARMA(p, q) process. Then one can select the order by
minimizing the criteria functions

AIC(p, q) = ln(σ̃2(p, q)) +
2(p+ q)

T

BIC(p, q) = ln(σ̃2(p, q)) +
(p+ q) lnT

T



Representations of an ARMA(p, q) process 22

Suppose both the AR and MA lag polynomials can be factored
such that

(1− φ1L) . . . (1− φpL)(Xt − µX) = (1− θ1L) . . . (1− θqL)εt.

If |φj | < 1 for all j and φi 6= θj for any i, j, we can represent an
ARMA process as an MA(∞) process

Xt = µX + (1− φ1L)−1 . . . (1− φpL)−1(1− θ1L) . . . (1− θqL)εt

= µX +

∞∑
j=0

ωjεt−j

In this case, we say the process is causal.



Representations of an ARMA(p, q) process 23

Similarly, if |θj | < 1 for all j, then we can represent an ARMA
process as an AR(∞) process

(1− θ1L)−1 . . . (1− θqL)−1(1− φ1L) . . . (1− φpL)(Xt − µX)

=

1−
∞∑
j=1

λjL
j

 (Xt − µX) = εt.

In this case, we say the process is invertible.



Example 24

Express the following ARMA(1,1) model as an MA(∞) process.

Xt = a1Xt−1 + εt − b1εt−1, εt
iid∼
(
0, σ2

)
.
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