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Moving Average Model




MA(1) process 3
—

Consider the stochastic process
Xe=(1—=b1)ag+¢e; — bigg—1.

Since X; is just a weighted average of the current and past
shocks, it is called a moving-average process with order 1, or an
MA(1) process.




Invertibility 4
—

Re-arranging the MA(1) process, we have
et +ag = bi(e—1 + ap) + Xy = Zlet —j

We say X, is invertible if |b1| < 1, so that the realization from
the infinite past has little influence on the current shock.




An MA(q) process 5
—

In general, an MA(q) process is given by

Xy =pux +e—bigg1— - —bgcr—y
:/JJX—F(I—blL—“'—quq)Et

where &; i (0, 02).




Moments of an MA(q) process 6
—

Obviously, by the iid assumption on &,
E[X] = px
var(X;) = (1 + 07 + -+ + 63)02
’}/X(h) _ (_bh + bh+1b1 + -+ bqbq—h)o-Qa h S q
0, h>q

Since they are all time-invariant, an MA(q) process is weakly
stationary.




Identifying the order of an MA process
—
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Estimation of an MA process 8

—

The estimation of an MA process is typically done by the
mazimum-likelihood estimation (MLE). Consider the MA(1)
process

Xt = px +er— g,

and assuming that ¢y = 0, then
e1=X1— pux
€9 = Xo — pux +biey
€3 = X3 — px +biez




Estimation of an MA process 9

—

Assuming further that e; is normally distributed, the likelihood
function is given by

Yt
‘C()LLXablyo-;Xl, e ,XT) = (27‘(‘0‘2)T/2 exp _5171;
g

The coefficients can be obtained by maximizing the above
likelihood function.




Forecasting an MA process 10

—

Consider an MA(1) process
Xt = px +e¢ —bieea.
Then the h-step forecasts are

Xi(1) =E[Xp 1| Xy, ... ] = px — biey
X1(2) = E[Xpg2| Xty ... ] = px

The process reverts to its mean after two steps.




Forecasting an MA process 11

—

Consider an MA(q) process
Xy =pux +e¢ —brgg—1 — - — by€t—g.
Then the h-step forecast is

0, h>q
Zgzhbjgt-‘rh—j’ h=1,...,q

~

Xi(h) = px — {

The variance of the forecast error is

(1+b63+---+b2)0% h>gq

Zh_1b2-02 h=1,...,q

var(Xep — )?t(h)) = {
j=0"j

where by = 1.




Forecasting an MA process 12

—

Procedure of forecasting an MA process:

1.

Find the order ¢ of the MA process with the
autocorrelation function.

2. Estimate the coefficients {b;} by MLE

3. Obtain the residuals €; recursively, assuming the initial

shocks €g,e_1,....

. Obtain the forecast X;(h) by the equation in the last slide.




Forecasting an MA process 13

Forecast of an MA(1) process
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ARMA Model




ARMA(1,1) model 15
—

The autoregressive moving-average (ARMA) model combines
an AR and MA model. For example, an ARMA(1,1) model is

i
Xt —a1Xy—1 = ag + &4 — b1, e~ (0,07), (1)

where a1 # by.




Properties of an ARMA(1,1) process 16
—

If X; is weakly stationary, then taking expectation of Eq.(1),

ao

Mx—a1MX:a0:>,uX:1 .
—




Properties of an ARMA(1,1) process 17
—

Rewriting Eq.(1) as
Xt =ao+ a1 Xi—1 + & — bigp—,
and computing the variance of both sides,

var(Xy) = a? var(X;_1) + o2 + bio? — 2a10,E [ X164 1]
(1 — 2a1b1 + b%)UQ
1—a?

which requires |a1| < 1.




Properties of an ARMA(1,1) process 18
—

To find the autocovariance of X;, we first write the model as
Xt —px = a1 (Xe—1 — px) +e¢ — bigg1.

Then we multiply X;_, — px to the equation and take

expectation,
vx(1) = a1yx(0) = bio?, h=1
vx(h) = a1yx(h — 1), h>1.

Similarly, the autocorrelation function (ACF) is given by

bio?
7x(0)

px (1) =a1— px(h) =aipx(h—1), h > 1.




ARMA(p, q) process 19
—

In general, an ARMA(p, q) process is written as
Xi=ag+ a1 Xe—1+ -+ apXi—p +er —breg—1 — - — byci—q,
where &; id (0, 02). Using the lag polynomial representation,
(1—aL—- —aplP)( Xy —px)=(1—bL—---—by L),

where
ag

S S ——

The stationarity condition is the same as that of an AR(p)
process.




Estimation of an ARMA (p, ¢) process 20
—

Assuming €; = 0 for all j < p, we have

Epr1 = Xpp1 —a1 Xp — - —apX1 —ap

epr2 = Xpr2 —a1Xpp1 — - —apXo —ag + bigpi

Assuming again that e; N (0, 02), we can estimate the
coefficients by MLE.




Order selection 21

—

Let 52(p, q) be the sample variance of the residuals by fitting an
ARMA (p, q) process. Then one can select the order by
minimizing the criteria functions

2(p+q)
T
(p+q)InT
T

AIC(p,q) = ln(52(p, q)) +

BIC(p,q) = In(G%(p,q)) +




Representations of an ARMA(p, q) process 22
—

Suppose both the AR and MA lag polynomials can be factored
such that

(1= d1L)...(1— ¢pL)(Xy — px) = (1 — 61L) ... (1 — 8,L)ey.

If |¢;] < 1 for all j and ¢; # 6; for any 4, j, we can represent an
ARMA process as an MA(oco) process

Xe=px+(0—¢1 L)t (1—¢pL) "1 —61L)...(1 —6,L)e,

o0
= pux + E WiEt—j
=0

In this case, we say the process is causal.




Representations of an ARMA(p, q) process 23
—

Similarly, if |6;| < 1 for all j, then we can represent an ARMA
process as an AR(oco) process

(1—61L) .. (1= 0,L) (1 — $1L) ... (1 — ¢pL)( Xy — pix)

o
=|1- Z )\jLJ (Xt — /,LX) = &t.
j=1

In this case, we say the process is invertible.




Example 24

—

Express the following ARMA(1,1) model as an MA(co) process.

iid 2
Xy = a1 Xy + e — bigg—1, er ~ (0,0%).
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