

Capital University of Economics and Business

ISEM

Financial Econometrics

AR(1) Process

Instructor: CHEUNG Ying Lun

Term: Fall Semester, 2019

AR(1) process

We say X_t is an AR(1) process if it takes the form

$$X_t = a_0 + a_1 X_{t-1} + \varepsilon_t, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} \left(0, \sigma^2\right).$$
 (1)

AR(1) process as a linear process

Noticing that

$$X_{t} = a_{0} + a_{1}X_{t-1} + \varepsilon_{t}$$

$$X_{t-1} = a_{0} + a_{1}X_{t-2} + \varepsilon_{t-1}$$

$$X_{t-2} = a_{0} + a_{1}X_{t-3} + \varepsilon_{t-2}$$

$$\vdots$$

We can recursively substitute X_{t-j} into the equation of X_t , namely,

$$X_{t} = a_{0} + a_{1}X_{t-1} + \varepsilon_{t}$$

$$= a_{0} + a_{1}(a_{0} + a_{1}X_{t-2} + \varepsilon_{t-1}) + \varepsilon_{t}$$

$$= a_{0}(1 + a_{1}) + a_{1}^{2}X_{t-2} + (\varepsilon_{t} + a_{1}\varepsilon_{t-1})$$

$$= a_{0}(1 + a_{1}) + a_{1}^{2}(a_{0} + a_{1}X_{t-3} + \varepsilon_{t-2}) + (\varepsilon_{t} + a_{1}\varepsilon_{t-1})$$

$$= a_{0}(1 + a_{1} + a_{1}^{2}) + a_{1}^{3}X_{t-3} + (\varepsilon_{t} + a_{1}\varepsilon_{t-1} + a_{1}^{2}\varepsilon_{t-2})$$

$$= \dots$$

$$= a_{0}(1 + a_{1} + a_{1}^{2} + \dots + a_{1}^{J-1}) + a_{1}^{J}X_{t-J} + (\varepsilon_{t} + a_{1}\varepsilon_{t-1} + a_{1}^{2}\varepsilon_{t-2} + \dots + a_{1}^{J-1}\varepsilon_{t-J+1})$$

Assuming that $|a_1| < 1$, as $J \to \infty$, the first term becomes

$$\lim_{J \to \infty} a_0 (1 + a_1 + a_1^2 + \dots + a_1^{J-1}) = a_0 \sum_{j=0}^{\infty} a_1^j = \frac{a_0}{1 - a_1}$$

The second term is

$$\lim_{I \to \infty} a_1^J X_{t-J} = 0$$

since $a_1^I \to 0$. Therefore, X_t can be written as a linear process

$$X_t = \frac{a_0}{1 - a_1} + \sum_{i=0}^{\infty} a_1^i \varepsilon_{t-j}, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} \left(0, \sigma^2\right).$$

Mean, variance and autovariance of an AR(1) process (Method I)

Since ε_t is assumed to be iid with mean 0, the mean of X_t can be obtained easily as

$$\mathbb{E}[X_t] = \mathbb{E}\left[\frac{a_0}{1 - a_1} + \sum_{j=0}^{\infty} a_1^j \varepsilon_{t-j}\right] = \frac{a_0}{1 - a_1}.$$

The variance of X_t is

$$\operatorname{var}(X_t) = \operatorname{var}\left(\sum_{j=0}^{\infty} a_1^j \varepsilon_{t-j}\right) = \sum_{j=0}^{\infty} \operatorname{var}(a_1^j \varepsilon_{t-j}) = \sum_{j=0}^{\infty} a_1^{2j} \sigma^2 = \frac{\sigma^2}{1 - a_1^2}.$$

Finally the autocovariance of X_t is given by

$$\begin{split} \gamma_X(h) &= \operatorname{cov}(X_t, X_{t-h}) \\ &= \operatorname{cov}\left(\sum_{j=0}^\infty a_1^j \varepsilon_{t-j}, \sum_{j=0}^\infty a_1^j \varepsilon_{t-h-j}\right) \\ &= \operatorname{cov}\left(\varepsilon_t + a_1 \varepsilon_{t-1} + \dots + a_1^{h-1} \varepsilon_{t-h+1} + \sum_{j=h}^\infty a_1^j \varepsilon_{t-j}, \sum_{j=0}^\infty a_1^j \varepsilon_{t-h-j}\right) \\ &= \operatorname{cov}\left(\sum_{j=h}^\infty a_1^j \varepsilon_{t-j}, \sum_{j=0}^\infty a_1^j \varepsilon_{t-h-j}\right) \\ &= \operatorname{cov}\left(a_1^h \varepsilon_{t-h} + a_1^{h+1} \varepsilon_{t-h-1} + \dots, \varepsilon_{t-h} + a_1 \varepsilon_{t-h-1} + \dots\right) \\ &= (a_1^h \cdot 1 + a_1^{h+1} \cdot a_1 + a_1^{h+2} \cdot a_1^2 + \dots)\sigma^2 \\ &= \sigma^2 \sum_{j=0}^\infty a_1^{2j+h} \\ &= \frac{a_1^h \sigma^2}{1 - a_1^2}. \end{split}$$

Therefore, we can also obtain

$$ho_X(h) = rac{\gamma_X(h)}{\gamma_X(0)} = a_1^h.$$

Mean, variance and autovariance of an AR(1) process (Method II)

From the above, we observe that when $|a_1| < 1$, then X_t is weakly stationary. We can then find the mean, variance and autocovariance of X_t more easily using the properties of weak stationarity.

First, we know that $\mathbb{E}[X_t] = \mathbb{E}[X_{t-1}] = \mu_X$. Therefore, taking expectation of Eq.(1),

$$\mu_X = \mathbb{E}[X_t] = a_0 + a_1 \mathbb{E}[X_{t-1}] + \mathbb{E}[\varepsilon_t]$$
$$= a_0 + a_1 \mu_X$$
$$= \frac{a_0}{1 - a_1}.$$

Now if we substitute $a_0 = \mu_X(1 - a_1)$ into Eq.(1) (or alternatively subtract the mean from Eq.(1)), then we have

$$X_t - \mu_X = a_1(X_{t-1} - \mu_X) + \varepsilon_t.$$
 (2)

Taking square and then expectation of the above equation, we have

$$\mathbb{E}\left[(X_t - \mu_X)^2\right] = \operatorname{var}(X_t) = \mathbb{E}\left[(a_1(X_{t-1} - \mu_X) + \varepsilon_t)^2\right]$$

$$= a_1^2 \mathbb{E}\left[(X_{t-1} - \mu_X)^2\right] + 2\mathbb{E}\left[(X_{t-1} - \mu_X)\varepsilon_t\right] + \mathbb{E}\left[\varepsilon_t^2\right]$$

$$= a_1^2 \operatorname{var}(X_t) + \sigma^2$$

$$= \frac{\sigma^2}{1 - a_1^2}.$$

Multiplying $X_{t-h} - \mu_X$ to Eq.(2) and taking expectation,

$$\mathbb{E} [(X_{t} - \mu_{X})(X_{t-h} - \mu_{X})] = \gamma_{X}(h)$$

$$= a_{1}\mathbb{E} [(X_{t-1} - \mu_{X})(X_{t-h} - \mu_{X})] + \mathbb{E} [\varepsilon_{t}(X_{t-h} - \mu_{X})]$$

$$= a_{1}\gamma_{X}(h-1) + \mathbb{E} [\varepsilon_{t}(X_{t-h} - \mu_{X})]$$

Note that $\mathbb{E}\left[\varepsilon_t(X_{t-h}-\mu_X)\right]=\sigma^2$ when h=0 and $\mathbb{E}\left[\varepsilon_t(X_{t-h}-\mu_X)\right]=0$ when h>0,

$$\gamma_X(h) = a_1 \gamma_X(h-1) + \begin{cases} \sigma^2 & \text{if } h = 0\\ 0 & \text{if } h > 0 \end{cases}$$

Using the fact that $\gamma_X(h) = \gamma_X(-h)$, for h = 0 and h = 1,

$$\gamma_X(0) = a_1 \gamma_X(1) + \sigma^2$$

$$\gamma_X(1) = a_1 \gamma_X(0)$$

Substituting the second equation to the first, we obtain

$$\gamma_X(0) = \frac{\sigma^2}{1 - a_1^2}, \qquad \gamma_X(h) = a_1 \gamma_X(h - 1) = a_1^h \gamma_X(0).$$

Similarly, we can obtain the autocorelation as

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = a_1^h.$$