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AR(p) process

We say Xt is an AR(p) process if it takes the form

Xt = a0 + a1Xt−1 + · · ·+ apXt−p + εt, εt
iid∼
(

0, σ2
)

. (1)

Estimation

In practice, we only observe {Xt}, but we do not know what the data generating process
is. Therefore, we need to estimate Eq.(1) with data. Suppose we observe {X1, . . . , XT},
we treat Xt as the dependent variable, and {Xt−1, . . . , Xt−p} as the independent varia-
bles, and regress Xt on its own lag.

dependent
variable

independent variables

t Xt Xt−1 . . . Xt−p+1 Xt−p
1 X1 - - -
2 X2 X1 - -
...

...
...

...
...

p Xp Xp−1 . . . X1 -
p + 1 Xp+1 Xp . . . X2 X1

...
...

...
...

...
T XT XT−1 . . . XT−p+1 XT−p

Notice that for t = 1, . . . , p, we do not have any observations for Xt−p. Therefore, we can
only start from t = p + 1. In total, we now have (T − p) pairs of observations. Writing
Eq.(1) in the matrix form,

Xt =
(
a0 a1 . . . ap

)


1
Xt−1

...
Xt−p

+ εt, t = p + 1, . . . , T

= a′Zt + εt.

We can estimate a by regressing Xt on Zt by the least square method. The solution is

â =

(
T

∑
t=p+1

ZtZ′t

)−1( T

∑
t=p+1

ZtXt

)
.

Finally, to estimate the variance of the innovation terms, we first obtain the residual
series as

ε̂t = Xt − X̂t

= Xt − â′Zt

= Xt − (â0 + â1Xt−1 + · · ·+ âpXt−p)
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We estimate σ2 by

σ̂2 =
1

T − 2p− 1

T

∑
t=p+1

ε̂2
t .

Here note that we are dividing the summation by T − 2p− 1, since we only have T − p
observations, and we lose p+ 1 degree of freedom as we are estimating p+ 1 parameters
a0, . . . , ap.

Order selection

In practice, we usually do not know what order of the AR process we should use. There
are several methods that can help us with that.

Model adequacy By assumption, the innovation term εt is a white noise sequence, i.e.,
there is no serial correlation in εt. If our model is adequate, then the estimation
residuals ε̂t should also inherit this property. Therefore, one way to check the
model adequacy is by examining the autocorrelation of the residual sequence and
check whether it is significantly different from zero. If the test results show serial
correlation in the residual sequence, then we can increase the number of lags in the
AR process.

Partial autocorrelation function Notice that an AR(p) process can also be written as an
AR(p + 1) process, with ap+1 = 0. Therefore, we can estimate an AR(j) model with
increasing order,

Xt = a0,1 + a1,1Xt−1 + e1t

Xt = a0,2 + a1,2Xt−1 + a2,2Xt−2 + e2t

Xt = a0,3 + a1,3Xt−1 + a2,3Xt−2 + a3,3Xt−3 + e3t
...

If the true model is an AR(p) process, then âp+1,p+1 should be close to zero, while
âj,j should be non-zero for j ≤ p. We can look at the sequence {â1,1, â2,2, . . . } and
find the cut-off point when the sequence drops to zero. This sequence is called the
partial autocorrelation function (PACF).

Information criterion Another popular method of choosing the lag order is by informa-
tion criterion (IC), e.g.,

AIC(j) = ln(σ̃2
j ) +

2j
T

BIC(j) = ln(σ̃2
j ) +

j ln T
T

An information criterion can be separated into two parts: the first part ln(σ̃2
j )

measures the fitness of the model; while the second part is a penalty term that
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increases with the number of lags chosen in the AR model. The intuition behind is
that:

• If j < p, then increasing j can significantly improve the fitness of the model,
thereby reducing ln(σ̃2

j ). Therefore, the IC become smaller when we increase
j.

• If j ≥ p, then increasing j does not improve the fitness of the model. In
this case, the penalty term will dominate and the IC become larger when we
increase j.

Therefore, the optimal lag order is the one that minimize the IC.

Forecasting

The optimal forecast of an AR process is the conditional expectation. At time t, we
already observe Xt and its past values. Therefore, our information set includes It =
{Xt, Xt−1, . . . }. Our h-step-ahead forecast is given by

X̂t(h) = a0 + a1X̂t(h− 1) + · · ·+ apX̂t(h− p),

where X̂t(i) = Xt+i if i ≤ 0.

Example: Forecasting an AR(1) process

Consider the AR(1) process

Xt = 1 + 0.5Xt−1 + et, et
iid∼ N (0, 1) .

Find the h-step ahead forecast and the respective variances of the forecast errors for h = 1, 2.
What if h→ ∞?

The one-step-ahead forecast is given by

X̂t(1) = E [Xt+1|Xt] = 1 + 0.5Xt.

The estimation error and its variance are respectively

ε̂t(1) = εt+1, var(ε̂t(t)) = σ2.

Note that Xt+2 is

Xt+2 = 1 + 0.5Xt+1 + εt+2

= 1 + 0.5(1 + 0.5Xt + εt+1) + εt+2

= 1.5 + 0.25Xt + εt+2 + 0.5εt+1.
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Therefore, the two-step-ahead forecast is

X̂t(2) = 1.5 + 0.25Xt.

The respective estimation error and its variance are

ε̂t(2) = εt+2 + 0.5εt+1, var(ε̂t(2)) = (1 + 0.52)σ2 = 1.25σ2.

Here var(ε̂t(2)) > var(ε̂t(1)), meaning that we have a more accurate one-step-ahead
forecast than a two-step-ahead forecast. In other words, Xt contains more information
on Xt+1 than Xt+2.

In general,

Xt+h = (1 + 0.5 + · · ·+ 0.5h−1) + 0.5hXt +
h−1

∑
j=0

0.5jεt+h−j.

Therefore, the h-step-ahead forecast is

X̂t(h) = (1 + 0.5 + · · ·+ 0.5h−1) + 0.5hXt.

The estimation error and its variance are

ε̂t(h) =
h−1

∑
j=0

0.5jεt+h−j, var(ε̂t(h)) =
h−1

∑
j=0

0.52jσ2.

As h→ ∞,

lim
h→∞

X̂t(h) =
∞

∑
j=0

0.5j =
1

1− 0.5
= µX.

Notice that the forecast of Xt will go back to its unconditional mean. We call this feature
mean-reverting. Every weakly stationary process is mean-reverting. Recall that the auto-
covariance γX(h) → 0 as h → ∞. The information on Xt+h from Xt diminishes when
h increases. Therefore, for the value of Xt+h in the infinite future, the best guess given
current information is its unconditional mean, which is the same as if we do not have
any information on Xt.

The estimation error and its variance are

lim
h→∞

ε̂t(h) = lim
h→∞

h−1

∑
j=0

0.5jεt+h−j,

lim
h→∞

var(ε̂t(h)) =
∞

∑
j=0

0.52jσ2 =
σ2

1− 0.52 = var(Xt+h).

The variance of the estimation error is the same as the variance of Xt+h itself. This again
implies that Xt does not contain any information on Xt+h as h→ ∞.

The following graph plots a simulated AR(1) process (blue line), together with the
multi-step-ahead forecast (red line) and the 95% interval (red dotted line).
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We observe that the forecast drops back to the unconditional mean very quickly.
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