

Capital University of Economics and Business

ISEM

Financial Econometrics

Assignment 1

Instructor: CHEUNG Ying Lun

Term: Fall Semester, 2019

1 True/false questions

State whether each of the following statements is true or false.

- Q1. The average return is the mean of past one-period returns.
- Q2. If the log return of an asset is constant, then its price will grow linearly.
- Q3. Let X be a random variable. The kurtosis of 10X is larger than that of X since the dispersion of 10X is larger than that of X.
- Q4. The log return must not normally distributed, since its lower bound is -1.
- Q5. It is possible that the loss of an asset is larger than its value-at-risk.
- Q6. The expected shortfall of an asset must be smaller than or equal to the respective value-at-risk.
- Q7. If a stochastic process is strictly stationary, then it is also weakly stationary.
- Q8. A linear process may not be weakly stationary.

2 Multiple choice questions

- Q1. Which of the following gives the highest effective interest rate?
 - (A) 10% per annum interest rate, compounded annually
 - (B) 11% per annum interest rate, compounded semi-annually
 - (C) 8.5% per annum interest rate, compounded monthly
 - **(D)** 8% per annum interest rate, compounded daily
- Q2. Suppose X is random variable with mean $\mathbb{E}[X] = 1$ and variance var(X) = 1. Find the second moment $\mathbb{E}[X^2]$.
 - **(A)** 1
 - **(B)** 0
 - (C) 4
 - **(D)** 2
- Q3. If X_t is a weakly stationary stochastic process, then which of the following must be time-invariant?
 - **(A)** The joint density function $f_{X_t,X_{t-1}}(x_1,x_2)$.
 - **(B)** The kurtosis $K(X_t)$
 - **(C)** The expectation of change $\mathbb{E}[X_t X_{t-1}]$
 - **(D)** None of the above
- Q4. If $X_t \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, then the following is time-invariant:
 - (A) Variance of X_t
 - **(B)** Kurtosis of X_t
 - (C) Skewness of X_t
 - **(D)** All of the above

3 Short questions

Q1. U-quadratic distribution

Let *X* be a random variable with density function

$$f(x|b,\alpha,\beta) = \alpha(x-\beta)^2, \qquad x \in [0,b]$$

where b > 0 and

$$\alpha = \frac{12}{b^3}, \qquad \beta = \frac{b}{2}.$$

Find the mean and variance of *X*.

Q2. Linear process

Consider the linear process

$$X_t = \mu + \sum_{j=0}^{\infty} b_j e_{t-j}, \qquad e_t \stackrel{\text{iid}}{\sim} \left(0, \sigma^2\right).$$

Suppose that

$$b_j = c^j + d^j$$

where |c| < 1 and |d| < 1. Find the mean, variance and autocovariance of X_t . Is X_t weakly stationary?