

Capital University of Economics and Business

ISEM

Financial Econometrics

Assignment 2 (Solution)

Instructor: CHEUNG Ying Lun

Term: Fall Semester, 2019

1 True/false questions

State whether each of the following statements is true or false.

Q1. An AR(1) process is always weakly stationary.

False. An AR(1) process is weakly stationary only if the AR coefficient is smaller than one in absolute value.

Q2. We can always estimate the coefficients in an AR process using the Yule-Walker equations.

False. We can only use the Yule-Walker equations to estimate the coefficients only if the AR process is weakly stationary.

Q3. The autocorrelation function of an AR(p) process cuts off at lag p.

False. The partial autocorrelation function of an AR(p) process cuts off at lag p.

Q4. The AR order selected by BIC tends to be smaller than that selected by AIC.

True. Since the penalty term of BIC is larger than that of AIC as long as $\ln T > 2$, or T > 7, BIC tends to choose a smaller lag order.

Q5. The variance of *h*-step-ahead forecast error increases with *h* in an AR process.

True. The current information set at time t, \mathcal{I}_t , carries less and less information as h increases. Therefore, the forecast error increases with h.

Q6. A model is adequate if the fitted residuals do not have serial correlation.

True. This is the definition of an adequate model.

Q7. Any MA process can be written as an $AR(\infty)$ process.

False. Only invertible MA processes can be written as an $AR(\infty)$ process.

Q8. An ARMA model is weakly stationary only if the MA part is invertible.

False. An ARMA model is weakly stationary only if the model is casual.

2 Multiple choice questions

- Q1. Consider an AR(1) process $X_t = a_0 + a_1 X_{t-1} + \varepsilon_t$, where $\varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2)$ and $|a_1| < 1$. Which of the following is true?
 - (A) X_t is weakly stationary.
 - **(B)** $\gamma_X(h) \to 0$ as $h \to \infty$.
 - **(C)** $\mathbb{E}[X_t] = 0$ if and only if $a_0 = 0$.
 - **(D)** All of the above.
 - **D**. An AR(1) process is weakly stationary if and only if $|a_1| < 1$. In this case, the autocovaraince function is $\gamma_X(h) = a_1^h \gamma_X(0) \to 0$ as $h \to \infty$. Finally, the unconditional mean of X_t is $\mu_X = a_0(1-a_1)^{-1}$, which equals zero if and only if $a_0 = 0$.
- Q2. Suppose you are trying to select the order of an AR(*p*) process. What is the suggested order according to the following table?

j	0	1	2	3	4
AIC(j)	0.066	-0.012	-0.039	-0.037	-0.034

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3
 - **C**. We select the AR order by minimizing the AIC. Therefore, we choose p=2.
- Q3. Consider an AR(1) process $X_t = a_0 + a_1 X_{t-1} + \varepsilon_t$, where $\varepsilon_t \stackrel{\text{iid}}{\sim} (0,1)$. Suppose also that the variance of X_t is $\gamma_X(0) = 2$. Find a_1 .
 - **(A)** $\sqrt{0.5}$
 - **(B)** $-\sqrt{0.5}$
 - **(C)** All of the above.
 - **(D)** None of the above.
 - **C**. Since $\gamma_X(0)=\sigma^2/(1-a_1^2)$, solving for a_1 gives $a_1=\pm\sqrt{1-\sigma^2/\gamma_X(0)}=\pm\sqrt{0.5}$. Therefore, a_1 can be either $\sqrt{0.5}$ or $-\sqrt{0.5}$.
- Q4. Consider an ARMA(1,1) process $X_t = a_1 X_{t-1} + \varepsilon_t b_1 \varepsilon_{t-1}$, $\varepsilon \stackrel{\text{iid}}{\sim} (0, \sigma^2)$. Which of the following statements are equivalent?
 - (1) X_t is weakly stationary.
 - (2) $|a_1| < 1$.

- (3) $|b_1| < 1$.
- (4) $a_1 = b_1$.
- **(A)** (1) and (2) only.
- **(B)** (1) and (3) only.
- (C) (1) and (4) only.
- **(D)** (2) and (3) only.

A. An ARMA(1,1) process is weakly stationary if and only if $|a_1| < 1$. Note that the stationarity condition of an ARMA process is the same as that of an AR process. If $|b_1| < 1$, then the process is invertible, but it does not affect the stationarity property of the process. If $a_1 = b_1$, then the process becomes a white noise sequence.

3 Short questions

Q1. Forecasting an AR(1) process

Consider the AR(1) process

$$X_t = a_0 + a_1 X_{t-1} + \varepsilon_t, \qquad \varepsilon_t \stackrel{\text{iid}}{\sim} \mathcal{U}\left(-1,1\right).$$

- (a) Find the variance of a random variable with uniform distribution $\varepsilon \sim \mathcal{U}(-1,1)$.
- (b) Find the h-step-ahead forecast of X_t for h = 1, 2.
- (c) What is the variance of the *h*-step-ahead forecast error?

Hint: The density function of a uniformly distributed function $\varepsilon \sim \mathcal{U}(a,b)$ is given by

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b\\ 0 & \text{otherwise.} \end{cases}$$

(a) First, the mean of ε is given by

$$\mathbb{E}\left[\varepsilon\right] = \int_{-1}^{1} \varepsilon f_{\varepsilon}(\varepsilon) d\varepsilon = \int_{-1}^{1} \varepsilon \frac{1}{2} d\varepsilon = \left[\frac{1}{4} \varepsilon^{2}\right]_{-1}^{1} = 0.$$

Therefore, the variance is

$$\operatorname{var}(\varepsilon) = \mathbb{E}\left[\varepsilon^{2}\right] = \int_{-1}^{1} \varepsilon^{2} \frac{1}{2} d\varepsilon = \left[\frac{1}{6} \varepsilon^{3}\right]_{-1}^{1} = \frac{1}{3}.$$

(b) The one-step ahead forecast is

$$\hat{X}_t(1) = \mathbb{E}\left[X_{t+1}|X_t\right] = a_0 + a_1 X_t.$$

The two-step ahead forecast is

$$\hat{X}_t(2) = \mathbb{E}\left[X_{t+2}|X_t\right] = a_0 + a_1\hat{X}_t(1) = a_0(1+a_1) + a_1^2X_t.$$

(c) The one-step ahead forecast error is

$$\hat{e}_t(1) = X_{t+1} - \hat{X}_t(1) = \varepsilon_{t+1}.$$

Therefore, the variance is $\mathrm{var}(\hat{e}_t(1)) = 1/3$. The two-step ahead forecast error is

$$\hat{e}_{t}(2) = X_{t+2} - \hat{X}_{t}(2)
= (a_{0} + a_{1}X_{t+1} + \varepsilon_{t+2}) - (a_{0} + a_{1}\hat{X}_{t}(1))
= a_{1}\hat{e}_{t}(1) + \varepsilon_{t+2}
= a_{1}\varepsilon_{t+1} + \varepsilon_{t+2}.$$

Therefore the variance is $var(\hat{e}_t(2)) = (a_1^2 + 1)/3$.

Q2. MA representation of an ARMA process

Consider the ARMA(1,1) process

$$X_t = a_1 X_{t-1} + \varepsilon_t - b_1 \varepsilon_{t-1}, \qquad \varepsilon_t \stackrel{\mathrm{iid}}{\sim} \left(0, \sigma^2\right).$$

Express X_t as an MA(∞) process.

Express the process in lag polynomial,

$$(1 - a_1 L)X_t = (1 - b_1 L)\varepsilon_t.$$

Applying the lag polynomial $(1 - a_1 L)^{-1}$ to both sides,

$$X_{t} = (1 - a_{1}L)^{-1}(1 - b_{1}L)\varepsilon_{t}$$

$$= (1 + a_{1}L + a_{1}^{2}L^{2} + \dots)(1 - b_{1}L)\varepsilon_{t}$$

$$= (1 + (a_{1} - b_{1})L + (a_{1}^{2} - a_{1}b_{1})L^{2} + \dots)\varepsilon_{t}$$

$$= \left[1 + \sum_{j=1}^{\infty} a_{1}^{j-1}(a_{1} - b_{1})L^{j}\right]\varepsilon_{t}.$$