

Capital University of Economics and Business

ISEM

Financial Econometrics

Assignment 2

Instructor: CHEUNG Ying Lun

Term: Fall Semester, 2019

1 True/false questions

State whether each of the following statements is true or false.

- Q1. An AR(1) process is always weakly stationary.
- Q2. We can always estimate the coefficients in an AR process using the Yule-Walker equations.
- Q3. The autocorrelation function of an AR(p) process cuts off at lag p.
- Q4. The AR order selected by BIC tends to be smaller than that selected by AIC.
- Q5. The variance of *h*-step-ahead forecast error increases with *h* in an AR process.
- Q6. A model is adequate if the fitted residuals do not have serial correlation.
- Q7. Any MA process can be written as an AR(∞) process.
- Q8. An ARMA model is weakly stationary only if the MA part is invertible.

2 Multiple choice questions

- Q1. Consider an AR(1) process $X_t = a_0 + a_1 X_{t-1} + \varepsilon_t$, where $\varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2)$ and $|a_1| < 1$. Which of the following is true?
 - **(A)** X_t is weakly stationary.
 - **(B)** $\gamma_X(h) \to 0$ as $h \to \infty$.
 - **(C)** $\mathbb{E}[X_t] = 0$ if and only if $a_0 = 0$.
 - **(D)** All of the above.
- Q2. Suppose you are trying to select the order of an AR(*p*) process. What is the suggested order according to the following table?

j	0	1	2	3	4
AIC(j)	0.066	-0.012	-0.039	-0.037	-0.034

- **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3
- Q3. Consider an AR(1) process $X_t = a_0 + a_1 X_{t-1} + \varepsilon_t$, where $\varepsilon_t \stackrel{\text{iid}}{\sim} (0,1)$. Suppose also that the variance of X_t is $\gamma_X(0) = 2$. Find a_1 .
 - (A) $\sqrt{0.5}$
 - **(B)** $-\sqrt{0.5}$
 - **(C)** All of the above.
 - **(D)** None of the above.

- Q4. Consider an ARMA(1,1) process $X_t = a_1 X_{t-1} + \varepsilon_t b_1 \varepsilon_{t-1}$, $\varepsilon \stackrel{\text{iid}}{\sim} (0, \sigma^2)$. Which of the following statements are equivalent?
 - (1) X_t is weakly stationary.
 - (2) $|a_1| < 1$.
 - (3) $|b_1| < 1$.
 - (4) $a_1 = b_1$.
 - **(A)** (1) and (2) only.
 - **(B)** (1) and (3) only.
 - **(C)** (1) and (4) only.
 - **(D)** (2) and (3) only.

3 Short questions

Q1. Forecasting an AR(1) process

Consider the AR(1) process

$$X_{t} = a_{0} + a_{1}X_{t-1} + \varepsilon_{t}, \qquad \varepsilon_{t} \stackrel{\text{iid}}{\sim} \mathcal{U}\left(-1,1\right).$$

- (a) Find the variance of a random variable with uniform distribution $\epsilon \sim \mathcal{U}(-1,1)$.
- (b) Find the h-step-ahead forecast of X_t for h = 1, 2.
- (c) What is the variance of the *h*-step-ahead forecast error?

Hint: The density function of a uniformly distributed function $\varepsilon \sim \mathcal{U}(a,b)$ is given by

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b\\ 0 & \text{otherwise.} \end{cases}$$

Q2. MA representation of an ARMA process

Consider the ARMA(1,1) process

$$X_t = a_1 X_{t-1} + \varepsilon_t - b_1 \varepsilon_{t-1}, \qquad \varepsilon_t \stackrel{\mathrm{iid}}{\sim} \left(0, \sigma^2\right).$$

Express X_t as an MA(∞) process.