

Capital University of Economics and Business

ISEM

Financial Econometrics

Stationarity of an MA(1) Process

Instructor: CHEUNG Ying Lun

Term: Fall Semester, 2019

Consider the stochastic process

$$X_t = e_t + e_{t-1}, \qquad e_t \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0,1\right).$$

Find the expected value and autocovariance of X_t . Is X_t weakly stationary? Is X_t strictly stationary?

The expected value of X_t is given by

$$\mathbb{E}\left[X_{t}\right] = \mathbb{E}\left[e_{t} + e_{t-1}\right] = \mathbb{E}\left[e_{t}\right] + \mathbb{E}\left[e_{t-1}\right] = 0.$$

The variance of X_t is given by

$$\operatorname{var}(X_t) = \mathbb{E}\left[(X_t - \mathbb{E}\left[X_t \right])^2 \right] = \mathbb{E}\left[X_t^2 \right] = \mathbb{E}\left[(e_t + e_{t-1})^2 \right]$$

Since e_t is an iid (*independently and identically distributed*) process, $\mathbb{E}\left[e_t e_{t-1}\right] = 0$. Therefore, expanding the bracket we have

$$var(X_t) = \mathbb{E}\left[e_t^2 + 2e_t e_{t-1} + e_{t-1}^2\right] = 2.$$

Similarly, the first-order autocovariance of X_t is

$$\gamma_X(1) = \text{cov}(X_t, X_{t-1}) = \mathbb{E}[X_t X_{t-1}] = 1.$$

The *h*-th order autocovariance of X_t for all $h \ge 2$ is

$$\gamma_X(h) = \operatorname{cov}(X_t, X_{t-1}) = 0.$$

Since both the mean and autocovariances of X_t are finite and time-invariant, X_t is weakly stationary.

Moreover, since e_t is iid normal, X_t is also normally distributed. For example, the joint distribution of (X_t, X_{t-1}) is given by

$$\begin{pmatrix} X_t \\ X_{t-1} \end{pmatrix} \stackrel{\mathrm{iid}}{\sim} \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \right)$$

Here the covariance matrix of (X_t, X_{t-1}) is obtained by

$$\Sigma = \begin{pmatrix} \operatorname{var}(X_t) & \operatorname{cov}(X_t, X_{t-1}) \\ \operatorname{cov}(X_{t-1}, X_t) & \operatorname{var}(X_{t-1}) \end{pmatrix} = \begin{pmatrix} \sigma_X^2 & \gamma_X(1) \\ \gamma_X(1) & \sigma_X^2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

Since the joint distribution of (X_t, X_{t-1}) (and actually any combinations of $\{X_t\}$) is identical for any t, X_t is also *strictly stationary*.