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1 Asset returns

1.1 Simple returns

The return of holding an asset for one period of time is

1 + Rt =
Pt

Pt−1
.

If one holds an asset for k periods of time, the cumulative k-period return is just the
product of the previous k one-period returns, namely

1 + Rt[k] =
Pt

Pt−k
=

Pt

Pt−1

Pt−1

Pt−2
· · · Pt−k+1

Pt−k
= (1 + Rt) · · · (1 + Rt−k+1).

The average return R̄ is defined as the geometric mean of the past one-period returns.

1 + Rt[k] = (1 + R̄)k ⇐⇒ 1 + R̄ =

(
k−1

∏
j=0

(1 + Rt−j)

)1/k

.

1.2 Compounding

The effective interest rate (or return) can be affected by frequency of compounding.
Suppose per annum interest rate is r, and the frequency of compounding is m, then for
every 1/m year, there is a r/m interest. Therefore, the effective interest rate is

1 + R =
(

1 +
r
m

)m
.

For example, suppose the per annum interest rate is 10%, then the effective interest rate
for different frequency of compounding is given by the following table. It can be obser-

Type
No. of

payments
Interest rate
per period

Total
value

Annual 1 10% $11000.00
Semiannual 2 5% $11025.00
Quarterly 4 2.5% $11038.13
Monthly 12 0.833% $11047.13
Weekly 52 0.192% $11050.65
Daily 365 0.027% $11051.56

Table 1: Values of a loan with 10% per annum interest rate

ved that the effective interest rate is higher, if the frequency of compounding increases.
As m→ ∞, the effective interest rate becomes

1 + R = lim
m→∞

(
1 +

r
m

)m
= er.
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Equivalently, r = ln(1 + R). Therefore, r is also called the log return. One advantage
of using the log return is that, the multi-period log return is just the sum of the single-
period returns, and so the average log return is the simple average of the one-period log
returns.

rt[k] =
k−1

∑
j=0

rt−j, r̄ =
1
k

k−1

∑
j=0

rt−j.

1.3 Statistical distribution of asset returns

In this course, we would like to study the statistical properties of the asset returns. Here
we first review some basics of statistical distributions.

1.3.1 Review of moments

Suppose that the marginal density function of X exists and is given by fX(x), then we
can define the moments and centered moments of X as

m′j = E
[

X j
]
=
∫ ∞

−∞
xj fX(x)dx,

mj = E
[
(X− µX)

j
]
=
∫ ∞

−∞
(x− µX)

j fX(x)dx,

where µX = m′1 = E [X]. We are mostly interested in the first four moments of X:

Mean The first moment measures the average location of X.

Variance The second centered moment measures the dispersion of X around its mean.

Skewness The third moment of the standardized variable measures the degree of asym-
metry in the distribution of X.

Kurtosis The fourth moment of the standardized variable measures the fatness of the
tails of the distribution of X, i.e., the probability of extreme values in X.

1.3.2 Review of statistical distributions

Normal distribution If R ∼ N (µ, σ2), then it has the following properties:

• S(R) = 0 and K(R) = 3.

• Ŝ(R) d−→ N
(
0, 6

T
)

and K̂(R) d−→ N
(

3, 24
T

)
.

• Therefore, one can construct a t-test to test for example H0 : S(R) = 0 against
H1 : S(R) 6= 0. If the null hypothesis is rejected, then one can conclude that R is
not normally distributed.
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Log normal distribution Since the normal distribution does not have a lower bound,
it is not suitable to be used to describe the behavior of asset returns. Instead, we can
assume the log-return is normally distributed, i.e., r = ln(1 + R) ∼ N (µ, σ2). Then we
can show that

lim
r→−∞

R = lim
r→−∞

er − 1 = −1.

Scale mixture of normal distributions In reality, the sample kurtosis of asset (log) re-
turns is usually larger than 3, and therefore the normality test is rejected. The scale
mixture of normal distributions can provide a higher kurtosis by increasing the proba-
bility of extreme events.

1.3.3 Risk management

If we know the statistical distribution of the asset return, we can then assess its risks by
the following methods:

Value-at-risk Defined as P(∆V ≤ VaRα) = α, it is the maximum loss of an asset gi-
ven a probability α. For example, if α = 5%, then there is 95% chance that the
performance of the asset would be better than VaRα.

Expected shortfall The VaR cannot fully describe the risk of an asset since it ignores the
tail risk. The expected shortfall ESα(∆V) = E [∆V|∆V ≤ VaRα] can complement
the use of VaR by providing an assessment of the tail risk.

2 Stationary stochastic process

In Chapter 1, we are treating the asset returns as a random variable, say r ∼ (µ, σ2), and
the return in each time period, rt, as a realization of the random variable r. However,
this ignores the dynamic relations among each rt. Therefore, in this chapter, we will treat
it as a stochastic process, i.e., a sequence of random variables sorted by time.

2.1 Linear process

If Xt has finite mean and variance, and has the representation

Xt = µX +
∞

∑
j=0

cjεt−j, εt
iid∼
(

0, σ2
)

,

then we say Xt is a linear process. Here we study four types of linear processes:

White noise Xt = µX + εt.

• In this case, c0 = 1 and cj = 0 for all j > 0.
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AR(p) model Xt = a0 + a1Xt−1 + · · ·+ apXt−p + εt.

• Suppose p = 1 and |a1| < 1, then we can write

Xt = µX +
∞

∑
j=0

aj
1εt−j.

In this case, cj = aj
1.

MA(q) model Xt = µX + εt − b1εt−1 − · · · − bqεt−q.

• In this case, c0 = 1, cj = −bj for j = 1, . . . , q and cj = 0 for j > q.

ARMA(p, q) model Xt = a0 + a1Xt−1 + · · ·+ apXt−p + εt − b1εt−1 − · · · − bqεt−q.

• Suppose p = q = 1 and |a1| < 1, then we can write

Xt = µX +

(
1 +

∞

∑
j−1

aj−1
1 (a1 − b1)Lj

)
εt.

In this case, c0 = 1 and cj = aj−1
1 (a1 − b1) for j > 0.

2.2 Properties of linear processes

2.2.1 White noise

If Xt = µX + εt, and ε
iid∼
(
0, σ2), then it is obvious that Xt

iid∼
(
µX, σ2). By the iid property,

we know also that

γX(h) = 0, ρX(h) = 0, for all h > 0.

Moreover, if Xt is iid, then its sample autocorrelation follows

ρ̂X(h)
d−→ N (0, T−1), h = 1, 2, . . . .

Therefore, we can construct a t-test to test the following hypothesis

Hh
0 : ρ̂X(h) = 0 vs Hh

1 : ρ̂X(h) 6= 0

If we reject the null hypothesis, then we conclude that Xt is not a white noise. Alterna-
tively, we can also test the joint hypothesis{

H0 : ρX(1) = · · · = ρX(m) = 0
H1 : ρX(i) 6= 0 for some i ∈ {1, . . . , m}

with the statistic

Q(m) = T(T + 2)
m

∑
j=1

ρ̂X(j)2

T − j
d−→ χ2

m.

Again, if we reject the null hypothesis, then we conclude that Xt is not a white noise.
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2.2.2 AR(p) model

Stationarity Writing the AR process as

(1− a1L− · · · − apLp)(Xt − µX) = εt

and let A(L) = 1− a1L− . . . apLp be the lag polynomial. Then Xt is weakly stationary if
and only if the root of the lag polynomial A(z) is larger than one in absolute value. That
is, the solutions of

A(z) = 1− a1z− · · · − apzp = 0

are larger than one in absolute value. Note that if z = r−1
j are the solutions of the

polynomial A(z) = 0, then we can factor the polynomial as

(z− r−1
1 ) · · · (z− r−1

p ) = 0 ⇐⇒ (1− r1z) . . . (1− rpz) = 0.

Therefore, we can factor the lag polynomial as

(1− r1L) · · · (1− rpL)(Xt − µX) = εt.

Equivalently, Xt is weakly stationary if |rj| are smaller than one for all j = 1, . . . , p.

Moments If Xt is weakly stationary, then its mean can be obtained simply by taking
expectation of the model and solve for µX. We have

µX =
a0

1− a1 − · · · − ap
.

The variance and autocovariance function of Xt can be obtained by the Yule-Walker equa-
tions, which is obtained by multiplying Xt−h − µX to the model and taking expectation,

γX(h)− a1γX(h− 1)− · · · − apγX(h− p) =

{
0 if h > 0
σ2 if h = 0

The Yule-Walker equations are useful in the following two ways:

1. We can use the relation to find higher order autocovariance.

2. We can estimate the coefficients aj by using sample autocovariance and those equa-
tions.

For example, when p = 1, the autocovariance is given by

σ2
X = γX(0) =

σ2

1− a2
1

, γX(h) = ah
1γX(0).

Therefore, the autocovariance converges to zero as h→ ∞.
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2.2.3 MA(q) model

Moments To find the mean of an MA process, we can simply take the expectation of
the model and obtain E [Xt] = µX. By the iid assumption, the variance of Xt can be
given by

var(Xt) = (1 + b2
1 + · · ·+ b2

q)σ
2.

Similarly, the autocovariance can be simply obtained by

γX(h) =

{
(−bh + bh+1b1 + · · ·+ bqbq−h)σ

2 h ≤ q
0, h > q

Here we can make two observations:

1. The autocovariance has a different pattern from that of an AR process. It becomes
zero when h > q, while for an AR process, the autocovariance only becomes zero
as h→ ∞.

2. The mean, variance and autocovariance do not depend on t, and are finite for any
values of bj. Therefore, an MA(q) process is always weakly stationary.

2.2.4 ARMA(p, q) model

Stationarity The stationary of an ARMA(p, q) model is the same as an AR(p) model.

Moments Similar to an AR process, the mean of a weakly stationary ARMA process
can be obtained by taking the expectation of model, and obtain

µX =
a0

1− a1 − · · · − ap
.

Similarly, the autocovariance function can be obtained by using the Yule-Walker equati-
ons. For example, if p = q = 1, then

γX(1) = a1γX(0)− b1σ2

γX(h) = a1γX(h− 1)

Similar to that of an AR(1) process, the autocovariance only goes to zero when h→ ∞.

2.3 Estimation

In reality, we only observe the sequence of data Xt. Therefore, we need to estimate the
model. Here we introduce two methods.

2.3.1 Least square method

The AR(p) model has the same form as a linear regression model. Therefore, we can
estimate the model by regressing Xt on its lags {Xt−j}.
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2.3.2 Maximum likelihood estimation

For an ARMA model, since the lags Xt−j are correlated with the error terms et−j, the least
square method leads to a bias. Therefore, we use the maximum likelihood estimation
(MLE) instead. The idea of MLE is to choose a set of parameters, such that the probability
of getting the set of observations {Xt} is maximized. Therefore, the MLE is given by

(â0, . . . , âp, b̂1, . . . , b̂q, σ̂2) = θ̂ = arg max
θ

L(θ; X1, . . . , XT)

where the likelihood function L(θ; X1, . . . , XT) is the joint density function of εt

L(θ; X1, . . . , XT) = fεp+1,...,εT(εp+1, . . . εT; θ).

Assuming εp+1−q = · · · = εp = 0, we can express εt as a function of Xt and its lags, as
well as the parameters θ.

2.4 Order selection

2.4.1 Autocorrelation function

If Xt is an MA(q) process, then we know that its autocorrelation becomes zero as h > q.
Therefore, by plotting the autocorrelation function, we can choose q such that γX(q + 1)
is close to 0.

2.4.2 Partial autocorrelation function

If Xt is an AR(p) process, then we can also express it as an AR(p + 1) process, with
ap+1 = 0. Therefore, we can perform a series of estimation

Xt = a0,1 + a1,1Xt−1 + e1t

Xt = a0,2 + a1,2Xt−1 + a2,2Xt−2 + e2t

Xt = a0,3 + a1,3Xt−1 + a2,3Xt−2 + a3,3Xt−3 + e3t
...

We can then choose the AR order such that ap+1,p+1 is close to zero.

2.4.3 Information criteria

The order of an ARMA(p, q) model can be chosen by minimizing the information criteria
functions

AIC(p, q) = ln(σ̃2(p, q)) +
2(p + q)

T

BIC(p, q) = ln(σ̃2(p, q)) +
(p + q) ln T

T
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2.4.4 Model adequacy

By assumption, εt is a white noise sequence. Therefore, if Xt is an ARMA(p, q) process,
and we are estimating an ARMA(i, j) model, where i ≥ p and j ≥ q, then the estimated
residuals should also behave like a white noise. Therefore, we can apply the white noise
test on the estimated residuals. If the null hypothesis is not rejected, then we say the
model is adequate. If the null hypothesis is rejected, then we need to increase either i or
j to capture the remaining serial correlation in the residuals.

2.5 Forecasting

The optimal forecast of a stochastic process is given by the conditional expectation

X̂t(h) = E [Xt+h|It] = E [Xt+h|Xt, . . . , X1] .

In an MA or ARMA model, we need to further assume that the initial values of εt are
zero. Then, we can express εt as a function of Xt. For example, in an ARMA(p, q) model,
we have to assume that εp+1−q = · · · = εp = 0, then we have

εp+1 = Xp+1 − a1Xp − · · · − apX1 − a0

εp+2 = Xp+2 − a1Xp+1 − · · · − apX2 − a0 + b1εp+1

...

In this case, It = {X1, . . . , Xt} = {εp+1, . . . , εt}.

3 Nonstationary stochastic process

3.1 Unit root process

Consider the ARMA(p, q) process

(1− a1L− · · · − apLp)(Xt − µX) = (1− b1L− · · · − bqLq)εt.

If d roots of the lag polynomial A(L) = 1− a1L− · · · − apLp are equal to one, then

(1− L)d(Xt − µX) = (1− rd+1L)−1 · · · (1− rpL)−1(1− b1L− · · · − bqLq)εt.

Since the right side of the equation is an ARMA(p − d, q) process, we say Xt is an
ARIMA(p− d, d, q) process. More generally, we say Xt is an I(d) process if (1− L)dXt =
∆dXt is weakly stationary.

Random walk process The simplest I(1) model is the random walk process, defined as

Xt = Xt−1 + εt.

Given an initial observation X0, a random walk process can be written as Xt =
X0 + ε1 + · · · + εt. Obviously, the variance of Xt is tσ2, which increases with t.
Therefore, Xt is not stationary. We say Xt has a stochastic trend.
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Random walk with drift If there is an intercept term in the random walk process, then

Xt = a0 + Xt−1 + εt = a0 · t +
t

∑
s=1

εs.

The constant term a0 here acts as a linear trend term.

Trend stationary process If Yt is weakly stationary and Xt = γ · t + Yt, then we say Xt
is trend stationary.

3.2 Unit root test

The most popular unit root test is the Dickey-Fuller test, which estimate the model

Xt = a1Xt−1 + εt

and test the hypothesis

H0 : a1 = 1 vs H1 : a1 < 1

If Xt is an AR(p) process, then we estimate

∆Xt = βXt−1 +
p−1

∑
j=1

φj∆Xt−j + εt

and test the hypothesis
H0 : β = 0 vs H1 : β < 0

We call it the augmented Dickey-Fuller test. Note that the asymptotic distribution of β̂

and â1 are not standard, and so the critical values are obtained by simulation.
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