

Applied Stochastic Process Ia Probability and Random Variable

A random variable is a measurable function $X : \Omega \to \mathbb{R}$ from Ω to the real line, where Ω is a sample space of the probability triple (Ω, \mathcal{F}, P) .

Probability Space

A probability space, or a probability triple (Ω, \mathcal{F}, P) , consists of three elements:

- ▶ The sample space Ω which is a nonempty set that contains all possible outcomes.
- ▶ The **event space** \mathcal{F} which is a collection of subsets of Ω that represents the events we want to consider.
- ▶ The **probability function** $P : \mathcal{F} \to [0, 1]$ which assigns probabilities to each event in \mathcal{F} .

Example

Suppose we are tossing a fair coin, denote a head as H and a tail as T, then we can define the respective probability space:

- ▶ The sample space is $\Omega = \{H, T\}$.
- ▶ The event space is $\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \{H, T\}\}.$
- ► The probability function
 - $P(\emptyset) = 0$
 - $P({H}) = P({T}) = 0.5$
 - ▶ $P({H,T}) = 1$

Example

Suppose we are rolling a fair die, then we can define the respective probability space:

- The sample space is $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- ► The event space is $\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \Omega\}.$
- ► The probability function
 - $ightharpoonup P(\emptyset) = 0$
 - $P({1,3,5}) = P({2,4,6}) = 0.5$
 - $P(\Omega) = 1$

Given the sample space Ω , \mathcal{F} is a σ -algebra of Ω if it is a set of subsets of Ω that satisfies the following conditions:

- \triangleright \mathcal{F} contains the sample space: $\Omega \in \mathcal{F}$.
- ▶ If $A \in \mathcal{F}$, then its complement A^C is also in \mathcal{F} .
- ▶ If $\{A_1, A_2, ...\}$ is a countable collection of sets in \mathcal{F} , then so is their union $\cup_i A_i \in \mathcal{F}$.

Assumption

Let (Ω, \mathcal{F}, P) be a probability space. Then, we make the following assumptions:

- 1. The probability of any event A is a non-negative real number, i.e., $P(A) \ge 0$.
- 2. The probability of at least one of all the possible outcomes of a process will occur is one, i.e., $P(\Omega) = 1$.
- 3. If two events A and B are mutually exclusive, then $P(A \cup B) = P(A) + P(B)$.

- ▶ Union: $A \cup B$ is true when at least one of A or B happens.
- ▶ Intersection: $A \cap B$ is true when both A and B happen at the same time.
- ► Complment: A^C is true when A does not happen, i.e., $A \cup A^C = \Omega$ and $A \cap A^C = \emptyset$.

Exercise

Suppose we are rolling a fair die. What is the probability that:

- 1. The die is either odd or larger than 4?
- 2. The die is both odd and larger than 4?
- 3. The die is not odd?

Let A|B denote the event that A happens, conditional on B happening. The probability of A|B is

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

What is the probability that a die is 6, given that the die is even?

If A and B are independent, then the condition that B happens contains not information on whether A happens or not. Therefore,

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = P(A)$$

$$\implies P(A \cap B) = P(A)P(B).$$

Random Variable and Distributions

A random variable is a measurable function $X : \Omega \to \mathbb{R}$ from Ω to the real line, where Ω is a sample space of the probability triple (Ω, \mathcal{F}, P) .

Consider tossing a coin, suppose the probability of a head is p, and let $\Omega = \{T, H\}$ be the sample space. If we let

$$X(\{T\}) = 0,$$
 $X(\{H\}) = 1.$

Then,

$$P(X = 0) = P(\omega = T) = 1 - p$$

 $P(X = 1) = P(\omega = H) = p$ (1)

and we say X has the Bernoulli distribution with probability mass function Eq.(1).

Suppose we are tossing a coin for n times, and denote X as the number of heads. Then the probability mass function of X is

$$P(X = i) = \binom{n}{i} p^{i} (1 - p)^{n-i}, \qquad i = 0, 1, \dots, n$$

where

$$\binom{n}{i} = \frac{n!}{(n-i)!i!}$$

We say X is a binomial random variable with prarameters (n, p), or simply $X \sim Bin(n, p)$.

Suppose $X_n \sim Bin(n, p)$ with $\lambda = np$, or equivalently $p = \lambda/n$. Let $X = \lim_{n \to \infty} X_n$, when $n \to \infty$ and $p \to 0$, we can show that

$$P(X = i) = e^{-\lambda} \frac{\lambda^{i}}{i!}, \quad i = 0, 1, ...$$

We say X has the Poisson distribution with parameter λ , or $X \sim Poi(\lambda)$. When is the Poisson distribution useful?

Suppose we are tossing a coin until we get a head, and let X be the number of trials. Then, the probability mass function of X is

$$P(X = i) = (1 - p)^{i-1}p,$$
 $i = 1, 2, ...$

We say X is a geometric random variable with parameter p, or $X \sim Geo(p)$.

Suppose $X_n \sim Geo(p_n)$ where $p_n = \lambda/n$ and $X = \lim_{n \to \infty} n^{-1} X_n$, then one can show that

$$F_X(t) = P(X \le t) = 1 - e^{-\lambda t}, \quad t \ge 0.$$

We say X is exponentially distributed with parameter λ , or $X \sim exp(\lambda)$. Note that X is a *continuous* random variable. Its probability density function is given by

$$f_X(t) = \begin{cases} \lambda e^{-\lambda t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Distribution	Useful for modeling the
Bernoulli	success of a single event
Binomial	number of times of success among n independent trials
Poisson	number of times of success in an interval of time
Germetric	number of independent trials until the first success
Exponential	time until the first success

