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Random variable 2

Definition
A random variable is a measurable function X : Ω→ R from Ω
to the real line, where Ω is a sample space of the probability
triple (Ω,F , P ).



Probability Space
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Definition
A probability space, or a probability triple (Ω,F , P ), consists of
three elements:

I The sample space Ω which is a nonempty set that
contains all possible outcomes.

I The event space F which is a collection of subsets of Ω
that represents the events we want to consider.

I The probability function P : F → [0, 1] which assigns
probabilities to each event in F .
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Example

Suppose we are tossing a fair coin, denote a head as H and a
tail as T , then we can define the respective probability space:

I The sample space is Ω = {H,T}.
I The event space is F = {∅, {H}, {T}, {H,T}}.
I The probability function

I P (∅) = 0
I P ({H}) = P ({T}) = 0.5
I P ({H,T}) = 1
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Example

Suppose we are rolling a fair die, then we can define the
respective probability space:

I The sample space is Ω = {1, 2, 3, 4, 5, 6}.
I The event space is F = {∅, {1, 3, 5}, {2, 4, 6},Ω}.
I The probability function

I P (∅) = 0
I P ({1, 3, 5}) = P ({2, 4, 6}) = 0.5
I P (Ω) = 1
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Definition
Given the sample space Ω, F is a σ-algebra of Ω if it is a set of
subsets of Ω that satisfies the following conditions:

I F contains the sample space: Ω ∈ F .

I If A ∈ F , then its complement AC is also in F .

I If {A1, A2, . . . } is a countable collection of sets in F , then
so is their union ∪iAi ∈ F .
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Assumption

Let (Ω,F , P ) be a probability space. Then, we make the
following assumptions:

1. The probability of any event A is a non-negative real
number, i.e., P (A) ≥ 0.

2. The probability of at least one of all the possible outcomes
of a process will occur is one, i.e., P (Ω) = 1.

3. If two events A and B are mutually exclusive, then
P (A ∪B) = P (A) + P (B).



Union, intersection and complement 9

I Union: A ∪B is true when at least one of A or B happens.

I Intersection: A ∩B is true when both A and B happen at
the same time.

I Complment: AC is true when A does not happen, i.e.,
A ∪AC = Ω and A ∩AC = ∅.
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Exercise
Suppose we are rolling a fair die. What is the probability that:

1. The die is either odd or larger than 4?

2. The die is both odd and larger than 4?

3. The die is not odd?
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Let A|B denote the event that A happens, conditional on B
happening. The probability of A|B is

P (A|B) =
P (A ∩B)

P (B)
.

What is the probability that a die is 6, given that the die is
even?
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If A and B are independent, then the condition that B happens
contains not information on whether A happens or not.
Therefore,

P (A|B) =
P (A ∩B)

P (B)
= P (A)

=⇒ P (A ∩B) = P (A)P (B).



Random Variable and Distributions
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Definition
A random variable is a measurable function X : Ω→ R from Ω
to the real line, where Ω is a sample space of the probability
triple (Ω,F , P ).
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Consider tossing a coin, suppose the probability of a head is p,
and let Ω = {T,H} be the sample space. If we let

X({T}) = 0, X({H}) = 1.

Then,
P (X = 0) = P (ω = T ) = 1− p
P (X = 1) = P (ω = H) = p

(1)

and we say X has the Bernoulli distribution with probability
mass function Eq.(1).
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Suppose we are tossing a coin for n times, and denote X as the
number of heads. Then the probability mass function of X is

P (X = i) =

(
n

i

)
pi(1− p)n−i, i = 0, 1, . . . , n

where (
n

i

)
=

n!

(n− i)!i!
We say X is a binomial random variable with prarameters
(n, p), or simply X ∼ Bin(n, p).
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Suppose Xn ∼ Bin(n, p) with λ = np, or equivalently p = λ/n.
Let X = limn→∞Xn, when n→∞ and p→ 0, we can show
that

P (X = i) = e−λ
λi

i!
, i = 0, 1, . . .

We say X has the Poisson distribution with parameter λ, or
X ∼ Poi(λ). When is the Poisson distribution useful?
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Suppose we are tossing a coin until we get a head, and let X be
the number of trials. Then, the probability mass function of X
is

P (X = i) = (1− p)i−1p, i = 1, 2, . . .

We say X is a geometric random variable with parameter p, or
X ∼ Geo(p).



Exponential distribution 19

Suppose Xn ∼ Geo(pn) where pn = λ/n and
X = limn→∞ n

−1Xn, then one can show that

FX(t) = P (X ≤ t) = 1− e−λt, t ≥ 0.

We say X is exponentially distributed with parameter λ,
orX ∼ exp(λ). Note that X is a continuous random variable.
Its probability density function is given by

fX(t) =

{
λe−λt, t ≥ 0

0, t < 0



Meaning of each distribution 20

Distribution Useful for modeling the...

Bernoulli success of a single event
Binomial number of times of success among n independent trials
Poisson number of times of success in an interval of time
Germetric number of independent trials until the first success
Exponential time until the first success
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