

# Applied Stochastic Process 2b Markov Chain (II) - Classification of States

CHEUNG Ying Lun
Capital University of Economics and Business

- 1. State j is said to be accessible from state i if  $p_{ij}^{(n)} > 0$  for some  $n \ge 0$ .
- 2. Two states i and j that are accessible to each other are said to *communicate*, and we write  $i \leftrightarrow j$ .
- 3. Two states that communicate are said to be in the same class.
- 4. The Markov chain is said to be *irreducible* if there is only one class, i.e., if all states communicate with each other.



# Property

- $\triangleright$   $i \leftrightarrow i$  for all i.
- ▶ If  $i \leftrightarrow j$ , then  $j \leftrightarrow i$ .
- ▶ If  $i \leftrightarrow j$ , and  $j \leftrightarrow k$ , then  $i \leftrightarrow k$ .
- ▶ Any two classes of states are either identical or disjoint.

Example

# Example

How many classes of states are there in the examples of Gambler's Ruin and Brand Preference?

For any state i, let  $f_{i,j}$  be the probability that, starting in state i, the process will ever enter state j. State i is said to be recurrent if  $f_{i,i} = 1$  and transient if  $f_{i,i} < 1$ .

# Property

- $\triangleright$  If state *i* is recurrent, then
  - ightharpoonup starting in state i, the process will reenter state i infinitely often.
  - ▶  $f_{i,j} = f_{j,j} = 1$  if  $i \leftrightarrow j$ . Therefore, recurrence is a class property.
- ▶ If state i is transient, then starting in state i, the number of time periods that the process will be in state i has a geometric distribution with finite mean  $1/(1 f_{i,i})$ .
- ▶ It is impossible to go from a recurrent to a transient state.
- ▶ In a finite state Markov chain, at least one class of state is recurrent.



Example

# Example

Which states are transient in the examples of Gambler's Ruin and Brand Preference?

If state j is recurrent, let  $m_j$  be the expected number of transitions that it takes the Markov chain when starting in state j to return to that state. Then, the recurrent state j is said to be positive recurrent if  $m_j < \infty$  and null recurrent if  $m_j = \infty$ .

# Property

Let  $\pi_j$  be the long run proportion of time in state j.

- ▶ If the Markov chain is irreducible and recurrent, then for any initial state  $\pi_i = 1/m_i$ .
- ▶ If i is positive recurrent and  $i \leftrightarrow j$ , then j is positive recurrent.
- ► Null recurrence is also a class property.
- ► An irreducible finite state Markov chain must be positive recurrent.



## Theorem

The long-run proportions of an irreducible Markov chain are the unique solution of the equations

$$\pi_j = \sum_i \pi_i P_{ij}, \qquad \sum_j \pi_j = 1$$

or in matrix form  $\pi \mathbf{P} = \pi$ , if the chain is positive recurrent. Moreover, if there is no solution of the preceding linear equations, then the Markov chain is either transient or null recurrent and all  $\pi_i = 0$ .

The *period* of a state is the largest number that will divide all the  $n \geq 1$  for which  $p_{i,i}^{(n)} > 0$ . A Markov chain is said to be aperiodic if all of its states have period one, and it is *periodic* otherwise.

## Theorem

- ► A periodic Markov chain does not have limiting probabilities.
- ► The limiting probabilities of an irreducible, aperiodic chain always exist and do not depend on the initial state.
- ► The limiting probabilities, when they exist, will equal the long-run proportions.
- ► An irreducible, positive recurrent, aperiodic Markov chain is said to be ergodic.

Example 13

# Example

In the examples of Gambler's Ruin and Brand Preference, do the stationary distributions exist?