

Applied Stochastic Process 3a Poisson Process

CHEUNG Ying Lun Capital University of Economics and Business

Poisson and Exponential Distributions

Suppose $X_n \sim Bin(n,p)$ with $\lambda = np$, or equivalently $p = \lambda/n$. Let $X = \lim_{n \to \infty} X_n$, when $n \to \infty$ and $p \to 0$, we can show that

$$P(X=i) = e^{-\lambda} \frac{\lambda^i}{i!}, \qquad i = 0, 1, \dots$$

We say X has the Poisson distribution with parameter λ , or $X \sim Poi(\lambda)$.

Some properties of the Poisson distribution:

- ▶ Moments: $\mathbb{E}[X] = \lambda$, $var(X) = \lambda$.
- ▶ Independent sums: If X_i are independent $Poi(\lambda_i)$, then $X_1 + \cdots + X_n \sim Poi(\lambda_1 + \cdots + \lambda_n)$

Suppose $T_n \sim Geo(p_n)$ where $p_n = \lambda/n$ and $T = \lim_{n \to \infty} n^{-1}T_n$, then one can show that

$$F_T(t) = P(T \le t) = 1 - e^{-\lambda t}, \quad t \ge 0.$$

We say T is exponentially distributed with parameter λ , or $T \sim exp(\lambda)$. Its probability density function is given by

$$f_T(t) = \begin{cases} \lambda e^{-\lambda t}, & t \ge 0\\ 0, & t < 0 \end{cases}$$

Some properties of the exponential distribution:

- ▶ Moments: $\mathbb{E}[T] = 1/\lambda$, $var(T) = 1/\lambda^2$.
- Lack of memory: P(T > t + s | T > t) = P(T > s).
- ▶ Exponential races: If $S \sim exp(\lambda)$ and $T \sim exp(\mu)$ are independent, then $\min\{S, T\} \sim exp(\lambda + \mu)$.

Counting Process

Definition

A stochastic process $\{N(t), t \geq 0\}$ is said to be a *counting* process if N(t) represents the total number of 'events' that occur by time t.

Definition

A stochastic process $\{N(t), t \geq 0\}$ is said to be a *counting* process if N(t) represents the total number of 'events' that occur by time t.

Example

- \triangleright Number of persons who enter a particular store by time t
- ightharpoonup Number of people who were born by time t
- ightharpoonup Number of goals a football player scores by time t

Property

- ► $N(t) \ge 0$.
- \triangleright N(t) is integer valued.
- ▶ If s < t, then $N(s) \le N(t)$, i.e., N(t) is increasing monotonically.
- For s < t, N(t) N(s) equals the number of events that occur in the interval (s, t].

Poisson Process

Definition

 $\{N(t), t \geq 0\}$ is a Poisson process if

- 1. N(0) = 0
- 2. N(t) has stationary increments, specifically, $N(t+s) N(s) \sim Poi(\lambda t)$
- 3. N(t) has independent increments, i.e., for $t_0 < t_1 < \cdots < t_n, N(t_1) N(t_0), \dots, N(t_n) N(t_{n-1})$ are independent.

Defining $o(\delta)$ as $\lim_{\delta\to 0} \frac{o(\delta)}{\delta} = 0$, a Poisson process possess the following properties:

Property

- $ightharpoonup N(t) = N(0+t) N(0) \sim Poi(\lambda t)$
- \blacktriangleright For some $\delta \to 0$,
 - $P(N(\delta) = 0) = 1 \lambda \delta + o(\delta)$
 - $P(N(\delta) = 1) = \lambda \delta + o(\delta)$
 - $P(N(\delta) = 2) = o(\delta)$
- ▶ The autocovariance function is $\gamma(t_1, t_2) = \lambda \min\{t_1, t_2\}$

Let τ_1, τ_2, \ldots be independent $\exp(\lambda)$ random variables. Let $T_n = \tau_1 + \cdots + \tau_n, T_0 = 0$. Then,

$$N(s) = \max\{n : T_n < s\}$$

is a Poisson process with mean λs .

Let τ_n be the time between arrivals of customers, so that $T_n = \tau_1 + \cdots + \tau_n$ is the arrival time of the *n*-th customer. Let N(s) be the number of arrivals by time s. Then, N(s) follows a Poisson process with mean λs . For example,

Then, N(s) = 4 when $T_4 \le s < T_5$.