

Applied Stochastic Process 4b Brownian Motion

 Standard Brownian Motion

▶ In 1827, the botanist Robert Brown observed pollen grains suspended in water and described the erratic and continuous movement of tiny particles ejected from the grains.

- ▶ In 1905, Albert Einstein explained the movement by the continual bombardment of the immersed particles by the molecules in the liquid.
- ► The mathematical properties of the trajetory of a single particle is studied by the mathematician Norbert Wiener.

Einstein showed that the position x of a particle at time t was described by the partial differential heat equation

$$\frac{\partial}{\partial t}f(x,t) = \frac{1}{2}\frac{\partial^2}{\partial x^2}f(x,t),$$

which solution is given by

$$f(x,t) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t},$$

which is the probability density function of the normal distribution with mean 0 and variance t

Definition

A stochastic process W(t), $t \in [0, T]$ is said to be a Wiener process, or a standard Brownian motion, if:

- 1. Zero starting value: P(W(0) = 0) = 1;
- 2. Independent increments: for any $0 \le t_0 \le t_1 \le \cdots \le t_n$, $W(t_1) W(t_0), \ldots, W(t_n) W(t_{n-1})$ are independent;
- 3. Stationary increments: $W(t+s) W(s) \sim \mathcal{N}(0,t)$ for any s,t>0.

Properties of a Wiener process:

- ▶ Moments: For each $s, t, W(t) \sim \mathcal{N}(0, t)$, and $cov(W(s), W(t)) = min\{s, t\}.$
- ▶ Sample path: For each realization, W(t) is everywhere continuous but nowhere differentiable.
- ► Markovian: $P(W(t+s) \le w | \mathcal{I}_t) = P(W(t+s) \le w | W(t)).$
- ▶ Martingale: $\mathbb{E}[|W(t)|] < \infty$ and $\mathbb{E}[W(t+s)|\mathcal{I}_t] = W(t)$.
- ▶ Scale invariance/self-similar: The distributions of $W(\sigma t)$ and $\sqrt{\sigma}W(t)$ are the same.

Theorem

Let T_a denote the first time that the Wiener process hits a > 0. Then, the distribution of T_a is given by

$$P(T_a \le t) = 2P(X(t) \ge a)$$

$$= 2P(X(1) \ge a/\sqrt{t})$$

$$= \frac{2}{\sqrt{2\pi}} \int_{a/\sqrt{t}}^{\infty} e^{-x^2/2} dx$$

Moreover,

- 1. $P(T_a > t) \to 0 \text{ as } t \to \infty$.
- 2. $\mathbb{E}[T_a]$ does not exist.

Variations on Brownian Motion

Suppose $\epsilon_t \stackrel{\text{iid}}{\sim} (\mu, \sigma^2)$, consider the process

$$x_{t} = x_{t-1} + \epsilon_{t}$$

$$= x_{0} + \sum_{s=1}^{t} \epsilon_{s}$$

$$= x_{0} + t \cdot \mu + \sum_{s=1}^{t} \epsilon_{s}$$

where $\varepsilon_t \stackrel{\text{iid}}{\sim} (0, \sigma^2)$. We call x_t a random walk with drift.

Definition

For any real μ and $\sigma > 0$, let B_t denotes the standard Brownian motion. The process

$$X_t = \mu t + \sigma B_t, \qquad t \ge 0$$

is called Brownian motion with drift parameter μ and variance parameter σ^2 .

For $0 \le t \le 1$, let X_t denote the difference in scores between the home and visiting teams after 100t percent of the game has been completed. The process is modeled as a Brownian motion with drift parameter μ being a measure of home team advantage.

- 1. What is the probability that the home team wins the game, given that they have an l points lead at time t < 1?
- 2. Stern (1994) estimated that $\hat{\mu} = 4.87$ and $\hat{\sigma} = 15.82$ with the results of 493 NBA games in 1992. What is the probability that the home team combacks from five points in the last five minutes of play (t = 0.9)?

	Lead						
Time t	l = -10	l = -5	l = -2	l = 0	l=2	l=5	l = 10
0.00				0.62			
0.25	0.32	0.46	0.55	0.61	0.66	0.74	0.84
0.50	0.25	0.41	0.52	0.59	0.65	0.75	0.87
0.75	0.13	0.32	0.46	0.56	0.66	0.78	0.92
0.90	0.03	0.18	0.38	0.54	0.69	0.86	0.98
1.00	0.00	0.00	0.00		1.00	1.00	1.00

Table: Probabilities p(l,t) that the Home team wins the game given that they are in the lead by l points after a fraction t of the game is completed

Definition

Let $(X_t)_{t\geq 0}$ be a Brownian motion with drift parameter μ and variance parameter σ^2 . The process $(G_t)_{t\geq 0}$

$$G_t = G_0 e^{X_t}, \quad t \ge 0, \ G_0 > 0$$

is called geometric Brownian motion.

Taking logarithm of G_t , $\ln G_t = \ln G_0 + X_t$. Therefore,

$$\ln G_t \sim \mathcal{N}(\ln G_0 + \mu t, \sigma^2 t).$$

 G_t is said to have a lognormal distribution, with moments

$$\mathbb{E}[G_t] = G_0 e^{(\mu + \sigma^2/2)t}, \quad \text{var}(G_t) = G_0^2 e^{2t(\mu + \sigma^2/2)} (e^{t\sigma^2} - 1)$$

On average, geometric Brownian motion exhibits exponential growth with growth rate $\mu + \sigma^2/2$.