

Applied Stochastic Process 4c Asset Returns

CHEUNG Ying Lun
Capital University of Economics and Business

Continuous Compounding

Suppose you are going to deposit \$10,000 in a bank, which offers you a 10% per annum interest rate and the following compounding scheme:

- 1. Compounding every year, where the one-year interest rate is 10%;
- 2. Compounding every 6 months, where the 6-month interest rate is 10%/2 = 5%.

Which one should you choose?

Type	No. of	Interest rate	Total
	payments	per period	value
Annual	1	10%	\$11000.00
Semiannual	2	5%	\$11025.00
Quarterly	4	2.5%	\$11038.13
Monthly	12	0.833%	\$11047.13
Weekly	52	0.192%	\$11050.65
Daily	365	0.027%	\$11051.56

Table: Values of a loan with 10% per annum interest rate

In general, if the bank gives interest m times a year, you get

$$$10,000 \times \left(1 + \frac{10\%}{m}\right)^m.$$

What if $m \to \infty$?

Suppose the continuously compounded interest rate is r, the simple gross return, or the *effective annual interest rate*, is

$$1 + R = \lim_{m \to \infty} \left(1 + \frac{r}{m} \right)^m.$$

Taking logarithm, and by L'Hopital's Rule

$$\lim_{m \to \infty} m \ln \left(1 + \frac{r}{m} \right) = r.$$

Therefore, $1 + R = e^r$, or $r = \ln(1 + R)$, where r is also called the log return.

Stock Prices as Geometric Brownian Motion

Let r_t be the log-return of an asset, then the asset price at time t can be represented as

$$P_t = P_0 e^{r_t}$$

Suppose further that r_t follows a Brownian motion with drift parameter μ and variance parameter σ^2 . Then P_t follows a geometric Brownian motion

$$P_t = P_0 e^{\mu t + \sigma B_t}$$

where B_t is the standard Brownian motion.

The advantages of modeling the price process as a geometric Brownian motion are:

- ▶ Geometric Brownian motion takes only positive values.
- ▶ The rate of return P_t/P_{t-1} of asset price may be reasonably modeled as independently distributed.

Some criticisms are:

- ► Geometric Brownian motion does not take into account for extreme events.
- ► The observed returns are not normally distributed, e.g., there are excess kurtosis.