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1 Poisson process

This section considers the Poisson process, which can be defined as follows.

Definition 1. {N(t), t ≥ 0} is a Poisson process if

1. N(0) = 0

2. N(t) has stationary increments, specifically, N(t+ s)−N(s) ∼ Poi(λt)

3. N(t) has independent increments, i.e., for t0 < t1 < · · · < tn, N(t1)−N(t0), . . . , N(tn)−
N(tn−1) are independent.

In the following, we will introduce two ways to construct a Poisson process.

1.1 Construction method I

1.1.1 Poisson distribution

We first begin with the definition of the Poisson distribution. Consider a sequence of random
variables {Xn(i)} with independent Bernoulli distribution and success probability

P (Xn(i) = 1) = pn = λ/n.

Then we can define another sequence of random variables {Nn} such that

Nn =
n∑
i=1

Xn(i) ∼ Bin(n, pn).

The distribution function of Nn is given by

P (Nn = j) = Cjnp
j
n(1− pn)n−j .

The two distributions can be interpreted as follows:

• Xn(i): whether there is any customer entering a shop within the period (i−1)/n ≤ t < i/n;

• Nn: the number of time intervals (e.g. hour) that at least one customer enters a shop.
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Time is discretized in the above two distributions. When n → ∞, the time interval becomes
very short and at the limit we have continuous time. In this case, we can show that

lim
n→∞

P (Nn = j) = lim
n→∞

Cjnp
j
n(1− pn)n−j

= lim
n→∞

n!

j!(n− j)!
λj

nj

(
1− λ

n

)n−j
= lim

n→∞

n

n

n− 1

n
· · · n− j + 1

n
· 1(

1− λ
n

)j ·︸ ︷︷ ︸
→1

λj

j!

(
1− λ

n

)n
︸ ︷︷ ︸
→e−λ

= e−λ
λj

j!
.

Let N = limn→∞Nn, then we say N follows the Poisson distribution Poi(λ), where E [N ] = λ.
It can be interpreted as

• N : the number of customers entering a shop in one unit of time.

1.1.2 From Poisson distribution to Poisson process

The above only considers the situation of one unit of time. What if we are observing for two
units of time instead? Again, we begin with discrete time. In 2 units of time, there are 2n

independent trials. Therefore,

Nn(2) =
2n∑
i=1

Xn(i) ∼ Bin(2n, λ/n).

Since now we have two times more independent trials of the same event, the expectation of
Nn(2) also doubles, E [Nn(2)] = 2λ. As n → ∞, the binomial distribution again converges to
the Poisson distribution, with mean 2λ, i.e.,

N(2) = lim
n→∞

Nn(2) ∼ Poi(2λ).

More generally, for any arbitrary t > 0, and let btnc be the largest integer smaller than or equal
to tn,

Nn(t) =

btnc∑
i=1

Xn(i) ∼ Bin(btnc, λ/n).

As n→∞,
N(t) = lim

n→∞
Nn(t) ∼ Poi(tλ).

We call N(t) a Poisson process.

Definition 2. Define a double sequence {Xn(i), i = 1, . . . , n} such that Xn(i) follows indepen-
dent Bernoulli distributions with probability distribution function P (Xn(i) = 1) = pn = λ/n

and P (Xn(i) = 0) = 1− pn. Then the sequence of random variables {N(t), t ≤ 0} is said to be
a Poisson process if

N(t) = lim
n→∞

btnc∑
i=1

Xn(i), N(0) = Xn(0) = 0.
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We can now verify that the three definitions of a Poisson process in Definition 1 are satisfied.

1. N(0) = 0: This one holds by definition.

2. Stationary increments: First, notice that

N(t+ s)−N(s) = lim
n→∞

b(t+s)nc∑
i=1

Xn(i)− lim
n→∞

bsnc∑
i=1

Xn(i) = lim
n→∞

b(t+s)nc∑
i=bsnc+1

Xn(i).

Therefore, N(t+ s)−N(s) consists of the sum of tn independent and identical Bernoulli
random variables. As n→∞, it converges to Poi(tλ). Since it does not depend on s, we
say it has stationary increments.

3. Independent increments:Consider two non-overlapping interval (t1, t2) and (t3, t4), such
that t1 < t2 ≤ t3 < t4. Then,

N(t2)−N(t1) = lim
n→∞

bt2nc∑
i=bt1nc+1

Xn(i),

N(t4)−N(t3) = lim
n→∞

bt4nc∑
i=bt3nc+1

Xn(i).

Since Xn(i) in i ∈ {bt1nc + 1, . . . , bt2nc} are all independent of Xn(j) in j ∈ {bt3nc +
1, . . . , bt4nc}, N(t2)−N(t1) and N(t4)−N(t3) are also independent.

1.2 Construction method II

1.2.1 Exponential distribution

We again begin with the discrete time. Consider the same sequence of Bernoulli random vari-
ables {Xn(i)}, and suppose now we want to know how many independent trials Tn are needed
before the first occurrence of an event. Then, Tn is said to follow a geometric distribution with
probability distribution function

P (Tn = j) = pn(1− pn)j .

We can also derive the cumulative distribution function

P (Tn ≤ j) =
j∑

k=0

pn(1− pn)k = pn
1− (1− pn)j+1

pn
= 1− (1− pn)j+1

Now let τn = Tn/n and n→∞,

lim
n→∞

P (τn ≤ t) = lim
n→∞

P (Tn/n ≤ t) = lim
n→∞

P (Tn ≤ nt)

= 1− lim
n→∞

(
1− λ

n

)bntc+1

= 1− lim
n→∞

[(
1− λ

n

)n] bntcn + 1
n

= 1− e−λt.

We say τ = limn τn has an exponential distribution with rate λ. The two distributions can be
interpreted as follows:
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• Tn: the number of time intervals (e.g. hour) until the first customer enters a shop;

• τ : the length of time until the first customer enters a shop.

The only difference between the geometric distribution and the exponential distribution is
whether we treat time as discrete values or a continuous value. A very important feature of
the two distributions is their lack of memory, i.e.,

P (τ > t+ s|τ > t) = P (τ > s).

Recall that the fundamental elements in the construction of these two distributions are the inde-
pendent Bernoulli trials Xn(i). The condition τ > t is equivalent to saying Xn(1) = Xn(bntc) =
0. However, it does not provide any information about Xn(i), i ≥ bntc, which are the compo-
nents of τ |τ > t. Suppose we have already waited for 5 minutes and there is no customer at
all. We now ask what the distribution function of the arrival time of the next customer is. If it
follows an exponential distribution, then regardless of how long we have waited, the arrival time
of the next customer still follows the same exponential distribution.

1.2.2 From exponential distribution to Poisson process

Instead of monitoring whether a customer shows up at every instance, we can alternatively
ask the question “when will the next customer arrive”. We therefore have another definition of
Poisson process.

Definition 3. Let τ1, τ2, . . . be independent exp(λ) random variables. Let Tn = τ1 + · · · + τn,
T0 = 0. Then,

N(t) = max{n : Tn < t}

is a Poisson process with mean λt.

In the above definition, Tn is the time for n customers to enter a shop. N(t) is the maximum
of n such that t > Tn, meaning that at time t, there is enough time for n customers to show up,
but not enough for the (n + 1)-th one. N(t) equals n after the n-th customers enter the shop,
and before the (n+ 1)-th one comes.

2 Renewal process

As discussed above, the memorylesssness of a Poisson process may not be desirable in many
applications. Noticing that this feature comes from the memorylesssness of the exponential
distribution, we can replace the exponential distribution by other (positive) distributions in the
definition of the Poisson process.

Definition 4. Let X1, X2, . . . be independent random variables with some distribution F . Let
Sn = X1 + · · ·+Xn, S0 = 0. Then,

N(s) = max{n : Sn < s}

is a renewal process.
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Example 1. Suppose that we have an infinite supply of lightbulbs whose lifetimes are inde-
pendent and identically distributed. Suppose also that we use a single lightbulb at a time, and
when it fails we immediately replace it with a new one. Under these conditions, {N(t), t ≥ 0}
is a renewal process when N(t) represents the number of lightbulbs that have failed by time t.

In the definition of a renewal process, assumptions are only made on the arrival time Xi.
Nothing is said about the distribution of the process N(t) itself. To find the distribution of
N(t), we first have to notice that the following two sentences are equivalent:

• N(t) ≥ n: At time t, at least n lightbulbs have broken.

• Sn ≤ t: The n-th lightbulb broke before time t.

Therefore, the distribution of N(t) is related to that of Sn by

P (N(t) = n) = P (N(t) ≥ n)− P (N(t) ≥ n+ 1)

= P (Sn ≤ t)− P (Sn+1 ≤ t)

= Fn(t)− Fn+1(t),

where Fn is the distribution of Sn =
∑n

i=1Xi.

Theorem 2.1. Let N(t) be a renewal process with arrival time Xi, and let E [Xi] = µ−1. Then,
as t→∞, N(t)/t→ µ. The number µ is called the rate of the renewal process.

Proof. First, notice that:

• SN(t) represents the time of the last renewal prior to or at time t; and that

• SN(t)+1 represents the time of the first renewal after time t.

Therefore,

SN(t) ≤ t ≤ SN(t)+1 ⇐⇒
SN(t)

N(t)
≤ t

N(t)
≤
SN(t)+1

N(t)
.

As t→∞ and so N(t)→∞, the left-hand side of the above inequality converges to

SN(t)

N(t)
= N(t)−1

N(t)∑
i=1

Xi → E [Xi] =
1

µ
.

Similarly, the right-hand side converges to

SN(t)+1

N(t)
= (N(t) + 1)−1

N(t)+1∑
i=1

Xi ·
N(t) + 1

N(t)
→ E [Xi] =

1

µ
.

Therefore,
t

N(t)
→ 1

µ
=⇒ N(t)

t
→ µ.

5



3 GI/G/1 Queue

An important application of the renewal process is in queuing theory. Queues can be found in
many places, e.g., the service desk in a bank, the highway toll station, etc. In a queue, there
are two types of people: input (e.g., customers) and server (e.g., the bank teller). A GI/G/1

Queue can be characterized as follows:

• GI (General input): Time between successive arrivals are independent with distribution
F and mean 1/λ.

• G (General service time): The i-th customer requires an amount of service si, which is
independent with distribution G and mean 1/µ.

• 1 (One server)

The two figures above plot the simulated customer arrival (top), departure (middle) and number
of customers in store (bottom). We observe that the number of customers in store (queue) piles
up when the service time is longer than the arrival time of new customers. When we simulate
the queue for a long time (right), we observe that the queue always empty out.

Theorem 3.1. Suppose λ < µ. If the queue starts with some finite number k ≥ 1 customers
who need service, then it will empty out with probability one. That is, the queue is stable.
Furthermore, the limiting fraction of time the server is busy is at most λ/µ.

Proof. The first part is obvious. For the second part, the busy time up to Tn (the time when
the n-th customer enters the shop) is at most Z0 + s1 + · · ·+ sn−1, where Z0 is the service time
for the k customers in the initial queue. Since the n-th customer just arrives at time Tn, the
server can at most serve up to the (n− 1)-th customer. The fraction of busy time is at most

Z0 + s1 + · · ·+ sn−1
Tn

=
Z0
n + s1+···+sn−1

n−1
n−1
n

t1++̇tn
n

→ 1/µ

1/λ
=
λ

µ
.
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