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1 Markov chain

De�nition 1. A (discrete time) Markov chain with state space X is a sequence X0, X1, . . . of

X -valued random variables such that for all states i, j, k0, k1, . . . and all times t = 0, 1, 2, . . . ,

P (Xt+1 = j|Xt = i,Xt−1 = kt−1, . . . ) = P (Xt+1 = j|Xt = i)

= pi,j

where pi,j depends only on the states i, j and not on the time t or the previous states kt−1, kt−2, . . . .

A very important property of a Markov chain is that it is Markovian, i.e., only the current

state a�ects the probability distribution of the future values of the process. History does not

matter.

De�nition 2. A stochastic process {X(t), t ∈ T } is said to be Markovian if

P (X(tn) ∈ A|X(t), t ≤ tn−1) = P (X(tn) ∈ A|X(tn−1))

where tn−1 < tn.

In fact, a Poisson process is also Markovian. The number of arrivals in the next moment

N(t + δ), given the current number of arrivals N(t), depends only on the current level, but

not the history. It is a continuous-time Markov chain. In this chapter, we will focus on a

discrete-time Markov chain.

2 Transition matrix

The main ingredient of a Markov chain is the transition probability, pij , which states the prob-

ability of a transition from some state i to state j. In a Markov chain, this probability is

unchanged throughout. We can collect all transition probabilities in the matrix form and form

the transition matrix P.

P = (pi,j)i,j =


p1,1 . . . p1,M
...

. . .
...

pM,1 . . . pM,M


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If the initial state is random with probability q0 = (q01, . . . , q0M ), then the unconditional prob-

ability at period 1 is given by

P (X1 = i) = q1i =
M∑
j=1

P (X1 = i ∩X0 = j)

=
M∑
j=1

P (X0 = j)P (X1 = i|X0 = j)

=

M∑
j=1

q0jpji.

The above equation can be interpreted easily: the probability that the Markov chain is at state

i at time n = 1 is the sum of the probabilities that it is at j at time n = 0 and transit to state

i. In matrix form,

q1 =
(∑M

j=1 q0jPj1 · · ·
∑M

j=1 q0jPjM

)

=
(
q01 · · · q0M

)
p11 · · · p1M
...

. . .
...

pM1 · · · pMM


= q0P

In general, the (m+n)-step transition probability can be obtained by the Chapman-Kolmogorov

Equations.

Theorem 2.1. Let Pn
ij = P (Xn+k = j|Xk = i) be the n-step transition probabilities. Then the

Chapman-Kolmogorov equations are

p
(n+m)
ij =

M∑
k=1

p
(n)
ik p

(m)
kj for all n,m ≥ 0, all i, j.

Proof. The (m+ n)-step transition probability can be written as

p
(m+n)
ij = P (Xm+n = j|X0 = i)

=

M∑
k=1

P (Xm+n = j ∩Xn = k|X0 = i).

Next, by the de�nition of conditional probabilityP (A ∩B) = P (A|B)P (B),

P (Xm+n = j ∩Xn = k|X0 = i) = P (Xm+n = j|Xn = k ∩X0 = i)P (Xn = k|X0 = i).

However, by the Markovian property of Xn, the information X0 = i is not useful when we know

Xn = k, i.e.,

P (Xm+n = j|Xn = k ∩X0 = i) = P (Xm+n = j|Xn = k).
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Now gathering terms we get

p
(m+n)
ij =

M∑
k=1

P (Xm+n = j ∩Xn = k|X0 = i)

=
M∑
k=1

P (Xm+n = j|Xn = k)P (Xn = k|X0 = i)

=

M∑
k=1

p
(m)
kj p

(n)
ik .

In matrix form, it gives us P(m+n) = P(m)P(n).

Now, if we consider the two-step transition matrix,

P(2) = P(1+1) = PP = P2.

By induction, we can show that

P(n) = Pn.

If the initial state is random with probability q0, then the unconditional probability at period

n is given by qn = q0P
n. If n is very large, it may converge to a stationary probability.

Theorem 2.2. The limiting probabilities of a Markov chain always exist and will not depend on

the initial state if the chain is aperiodic and irreducible. Moreover, it is given by the solution of

πj =
∑
i

πiPij ,
∑
j

πj = 1

or in matrix form πP = π,

The meaning of periodicity and reducibility will be discussed in the next section. To �nd out

the stationary probability, notice that by taking transpose of the equation πP = π,

P′π′ = π′ =⇒ (P′ − I)π′ = 0.

Recalling that the de�nition of eigenvalue λ and eigenvector v of any matrix A is

Av = λv.

Therefore, the vector π′, if exists, is actually the eigenvector of matrix P′ corresponding to the

eigenvalue λ = 1, up to normalization π1 = 1.

Example (Gambler's ruin). Consider a gambling game in which on any turn you win $1

with probability p = 0.4 or lose $1 with probability 1 − p = 0.6. Suppose initially you have $2

and you will quit the game either if your fortune reaches $4 or $0. Let Xn be the amount you

have after n plays.
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In this example, the state space, i.e., the amount of money you can have at any time n, is

X = {0, 1, 2, 3, 4, 5}. The transition matrix is given by

P =



1 0 0 0 0

0.6 0 0.4 0 0

0 0.6 0 0.4 0

0 0 0.6 0 0.4

0 0 0 0 1


.

Given the initial probability q0 = (0, 0, 1, 0, 0), the unconditional probabilities at di�erent n are

plotted in the diagram below:

We know that the player will end up with either $0 or $4. The probabilities otherwise converge

to zero very quickly. Although the unconditional probability seems to stabilize in the above

diagram, the limiting probability actually does not exists. In fact, if we compute the eigenvectors

of P′, we will �nd two eigenvectors π = (1, 0, 0, 0, 0) and π = (0, 0, 0, 0, 1) that correspond to

the eigenvalue λ = 1. With a di�erent initial probability, the unconditional probability will

also converge to a di�erent value. (Students are encouraged to play around with the R �le I

provided.)

Example (Brand preference). Suppose there are three types of laundry detergent, and

let Xn be the brand chosen on the nth purchase. Customers who try these brands are satis�ed

and choose the same thing again with probability 0.8, 0.6, and 0.4 respectively. When they

change they pick one of the other two brands at random. Suppose also that q0 = (0, 0.5, 0.5).
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In this example, the transition matrix is given by

P =


0.8 0.1 0.1

0.2 0.6 0.2

0.3 0.3 0.4

 .

The unconditional probability can be viewed as the market share of each brand, and is plotted

below.

We see that the market share stabilizes. After normalization, the eigenvector of P′ corresponding

to λ = 1 is

π =

(
6

11

3

11

2

11

)
,

which is also limiting probability of the Markov chain.

3 Classi�cation of states

3.1 Accessibility and class

A Markov chain is a model of (random) transitions among states. From the transition matrix

P we can deduce a lot of properties of the states. In this section, we try to classify the states

into di�erent groups or types according to their properties.

De�nition 3. 1. State j is said to be accessible from state i if p
(n)
ij > 0 for some n ≥ 0.

2. Two states i and j that are accessible to each other are said to communicate, and we write

i↔ j.

5



3. Two states that communicate are said to be in the same class.

4. The Markov chain is said to be irreducible if there is only one class, i.e., if all states

communicate with each other.

The above de�nitions are all related with each other. Accessibility means it is possible (i.e.,

with probability larger than zero) to transit from one state to another after some steps. If

p
(n)
ij = 0 for all n,

P (ever be in j|start in i) = P

( ∞⋃
n=0

(Xn = j)|X0 = i

)

≤
∞∑
n=0

P (Xn = j|X0 = i)

=

∞∑
n=0

p
(n)
ij

= 0.

Therefore, if state j is not accessible from state i, then starting in i, the process will never end

up in j.

Example (Gambler's ruin). Continuing with the example, the relations among states in

the state space X = {0, 1, 2, 3, 4} are

0← 1↔ 2↔ 3→ 4

It is easy to see that every state is accessible from states {1, 2, 3}. However, after we get to states
{0} or {4}, we cannot get to other states anymore. Therefore, the states {1, 2, 3} communicate

with each other and form one class .{0} and {4} do not communicate with each other or other

states and each of them forms a class on its own. There are in total three classes:

{0}, {1, 2, 3}. {4}.

Since there is more than one class, this Markov chain is reducible. This also explains why

Theorem 2.2 does not apply: the limiting probabilities do not exist.

Example (Brand preference). In this example, it is possible to switch from any state to

any state. Therefore, all three states are accessible from each other and they all communicate.

There is only one class. The Markov chain is irreducible.

Property. 1. i↔ i for all i.

2. If i↔ j, then j ↔ i.

3. If i↔ j, and j ↔ k, then i↔ k.

4. Any two classes of states are either identical or disjoint.
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Proof. The �rst two properties are trivial. They are true by de�nition. To show the third point,

notice that i↔ j implies that for some p
(n)
ij > 0 for some n and j ↔ k implies that p

(m)
jk > 0 for

some m. By the Chapman-Kolmogorov equations,

p
(n+m)
ik =

M∑
r=1

p
(n)
ir p

(m)
rk ≥ p

(m)
ij p

(n)
jk > 0.

We can show following the same steps that p
(s)
ki > 0 for some s. Therefore, i ↔ k. The fourth

point is a logical consequence of the third point.

3.2 Recurrent or transient states

De�nition 4. For any state i, let fi,j be the probability that, starting in state i, the process

will ever enter state j. State i is said to be recurrent if fi,i = 1 and transient if fi,i < 1.

A recurrent state is one that once we enter the state, we will eventually re-enter the same

state in the future, i.e.,

f(i, i) = P (i→ · · · → i) = 1.

In contrary, a transient state is one that, with positive probability, the process will never re-visit

the same state after it leaves the state. This can happen when the process jumps to another

class. Remember that if two states, say i and j, are in di�erent classes, they do not communicate.

Therefore, if i→ j, then j ↛ i. If the process enters j after leaving i, it will never visit i again.

Example (Gambler's ruin). If the player has $0 or $4, they will quit and their fortune

will remain unchanged thereafter. Therefore, obviously {0} and {4} are two recurrent states.

For the states {1, 2, 3}, since there is positive probability that Xn reaches 0 or 4 after leaving

the state and before re-entering the same state, they are transient states.

Example (Brand preference). Since it is always possible to re-enter any state, all states

are recurrent in this example.

The above examples already give some hints about the properties of recurrent/transient

states, which we will discuss below.

Property. 1. If state i is recurrent, then starting in state i, the process will reenter state i

in�nitely often.

2. If state i is recurrent and i ↔ j, then fi,j = fj,j = 1. Therefore, recurrence is a class

property.

3. It is impossible to go from a recurrent to a transient state.

4. If state i is transient, then starting in state i, the number of time periods that the process

will be in state i has a geometric distribution with �nite mean 1/(1− fi,i).

5. In a �nite state Markov chain, at least one class of state is recurrent.
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Proof. 1. It is easy to verify: since the state i is recurrent, starting in i, the process will

eventually return to i, i.e., f(i, i) = P (i → · · · → i) = 1. Due to the Markovian property

of a Markov chain, the process will eventually return to i twice is

P (i→ · · · → i→ · · · → i) = f(i, i)2 = 1.

By induction, the probability that the process will return to i in�nitely many times after

in�nitely many steps is still one.

2. Since i ↔ j, there is a positive probability that starting in i, the process will reach j.

Therefore, the probability that starting in i, the process reaches j before returning to i

is gij = P (i → · · · → j → · · · → i) > 0. The probability that the process starts in i

and returns to i without passing through j for n times is (1 − gij)
n. From the above,

we know that starting in i, the probability that the process never reaches j is therefore

limn→∞(1− gij)
n = 0, implying that the process will eventually reach j, i.e., fi,j = 1. The

probability that the above happens twice, i.e., i → · · · → j → . . . i → · · · → j → · · · → i,

is f2
i,j = 1, implying that fj,j = 1.

3. It can be proved by contradiction. Suppose it is possible to go from a recurrent state i

to a transient state j. However, by de�nition, starting in i, the process will eventually go

back to i. It means that it is possible that the process starts in i, then goes to j, and

�nally comes back to i. This will then imply that i and j communicate and they must be

in the same class. Moreover, by the Markovian property, after returning to i, the process

will eventually go back to j again, making j also recurrent. Therefore, it contradicts with

our initial assumption and must be wrong.

4. First, since recurrence is a class property, starting in i, the process will never come back

to i if it jumps to another class. The probability of this happening is 1− fi,i. If we de�ne

E as the event that the process starts in i and jumps to another class before reaching i

again, then the probability of success is P (E) = 1 − fi,i. E is a Bernoulli trial and the

number of time periods that the process will be in i is the same as the number of failed

trials, which follows a geometric distribution with p = P (E) = 1− fi,i.

5. Since the number of time periods that the process will be in a transient state follows a

geometric distribution, the probability that it is �nite equals one. It means that after a

�nite amount of time, say Ti, the Markov chain will never go back to state i. Suppose that

the state space is X = {1, . . . ,M}, then if all states are transient, the process will never

go back to any of the state after T1 + · · ·+ TM periods. However, the process must visit a

state. Therefore, at least one class of state is recurrent.

The above tells us about the properties of recurrent and transient states. We know that

the process will eventually go to a recurrent class. Now, we focus on the transient states and

consider the question: on average, how many time periods will the process stay in a transient
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state? To answer this question, suppose the transient states are collected in T = {1, . . . , t}. We

de�ne a transition matrix from one transient state to another transient state

PT =


p11 . . . p1t
...

. . .
...

pt1 . . . ptt

 .

We can compute the mean time spent in transient states using the following theorem.

Theorem 3.1. Let PT speci�es only the transition probabilities from transient states into tran-

sient states, and let S = (sij)i,j=1,...,t denote the matrix that collects the expected number of time

periods that the Markov chain is in state j, given that it starts in state i. Then,

S = (I−PT )
−1,

where I is the identity matrix.

Proof. Let δij = 1 if i = j and 0 otherwise. Conditioning on the initial transition,

sij = δij +

M∑
k=1

pikskj = δij +

t∑
k=1

pikskj ,

where the second equality above comes from the fact that it is impossible to go from a recurrent

state to a transient state. Now writing the above in matrix form,

S =


s11 . . . s1t
...

. . .
...

st1 . . . stt

 =


1

. . .

1

+


p11 . . . p1t
...

. . .
...

pt1 . . . ptt



s11 . . . s1t
...

. . .
...

st1 . . . stt


= I+PTS.

Re-arranging terms and solving for S, we obtain S = (I−PT )
−1.

Finally, we also want to �nd out the probability that the probability that a Markov chain

ever makes a transition into state j given that it starts in i. We already know that if i is

recurrent, then fi,i = 1 and fi,j = 0 if j is transient. The focus is on the case when both i and

j are transient.

Theorem 3.2. The probability that the Markov chain ever makes a transition into a transient

state j given that it starts in a transient state i is given by

fi,j =
sij − δi,j

sjj
, δi,j =

1, i = j;

0, i ̸= j.

Proof. We can separate sij into two cases as follows.

sij = E [time in j|start in i, ever transit to j] fij

+ E [time in j|start in i, never transit to j] (1− fij)

= (δij + sjj)fij + δij(1− fij)

= δij + fijsjj .

Solving the above equation yields fij = s−1
jj (sij − δij).
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3.3 Positive recurrence

In the last part, we introduce the concepts of recurrence and transience, and discuss the prop-

erties of the transient states. In this part, we will further separate recurrent states into positive

or null recurrent states.

De�nition 5. If state j is recurrent, let mj be the expected number of transitions that it takes

the Markov chain when starting in state j to return to that state. Then, the recurrent state j

is said to be positive recurrent if mj <∞ and null recurrent if mj =∞.

Let Tj = min{n > 0 : Xn = j} be the number of transitions until the Markov chain �rst

makes a transition into state j, then mj = E [Tj |X0 = j]. The relation between mj and the

long-run proportion of time in state j, πj , is stated below.

Theorem 3.3. If the Markov chain is irreducible and recurrent, then for any initial state πj =

1/mj.

Proof. Suppose the process starts in state i, and that it takes T1 to reach j for the �rst time.

Then, denote the amount of time for the process to return to j for the k-th time as Tk. Then,

at the time when the process return to j for the n-th time, the proportion of time the process

spends in state j is given by

πj,n =
n∑n

i=1 Tn
.

As n→∞,

πj = lim
n→∞

n∑n
i=1 Tn

= lim
n→∞

1

n−1
∑n

i=1 Tn
= lim

n→∞

1

n−1T1 + n−1
∑n

i=2 Tn
.

Since the Markov chain is irreducible and recurrent, states i and j communicate and it takes

�nitely many time for the process to reach j from i. Therefore, n−1T1 → 0. Next, following the

Markovian property of the Markov chain, Tj are independent and identically distributed for all

j ≥ 2. By the Law of Large Number,

n−1
n∑

i=2

Tn =
n− 1

n

1

n− 1

n∑
i=2

Tn
p−→ mj .

Therefore, πj = 1/mj .

Property. 1. If i is positive recurrent and i↔ j, then j is positive recurrent.

2. Null recurrence is also a class property.

3. An irreducible �nite state Markov chain must be positive recurrent.

Proof. 1. Suppose i is positive recurrent and i ↔ j. Then, there exists an n such that

p
(n)
i,j > 0. Now let πi > 0 be the long-run proportion of time that the chain is in i. Then,

πip
(n)
i,j represents the long-run proportion that the process is in i and then in j after n

transitions. Equivalently, it is the long-run proportion that the process is in j and was in
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i n transitions before, which is smaller than or equal to the long-run proportion that the

chain is in j. Finally,

πj ≥ πip
(n)
i,j > 0.

Since πj > 0, mj = 1/πj <∞.

2. It follows directly from the above. Since recurrence is a class property, if i is recurrent and

i ↔ j, then j is also recurrent. Since positive recurrence is also a class property, i and

j can either be both positive or null recurrent. Therefore, null recurrence is also a class

property.

3. We already know that an irreducible �nite state Markov chain must be recurrent and that

positive/null recurrence is a class property. If every state is null recurrence, the long-run

proportion of each state will be πi = 1/mi = 0, which is impossible since there are only

�nitely many states. Therefore, the chain can only be positive recurrent.

More can be said about the long-run proportion.

Theorem 3.4. The long-run proportions of an irreducible Markov chain are the unique solution

of the equations

πj =
∑
i

πipij ,
∑
j

πj = 1

or in matrix form πP = π, if the chain is positive recurrent. Moreover, if there is no solution

of the preceding linear equations, then the Markov chain is either transient or null recurrent and

all πj = 0.

Proof. Noting that πi is the long-run proportion of transition from state i, the long-run pro-

portion of transitions from state i to j is πipij . Therefore, the long-run proportion in state j is

equivalent to adding up the long-run proportion of transitions from all states i to j, i.e.,

πj =
∑
i=1

πipij .

Writing in matrix form, πP = π.

The long-run proportions are also called the stationary probabilities. The reason is that if

the initial state is chosen according to πj , then the probability of being in state j at any time n

is also equal to πj . You may also notice that they are the same as the limiting probabilities, if

they exist. The relations between them will be discussed next.

3.4 Periodicity

De�nition 6. The period of a state is the largest number that will divide all the n ≥ 1 for

which p
(n)
i,i > 0. A Markov chain is said to be aperiodic if all of its states have period one, and

it is periodic otherwise.
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Example (Gambler's ruin). In this example, one can only either earn one dollar or lose

one dollar unless one has already quit the game. We have for example

p22 = 0, p
(2)
22 > 0, p

(3)
22 = 0, p

(4)
22 > 0...

Then, we say the period of state 2 is 2, and that the process is periodic.

Example (Brand preference). In this example, pii > 0 for all i. Obviously, the process

is aperiodic.

Theorem 3.5. 1. A periodic Markov chain does not have limiting probabilities.

2. The limiting probabilities of an irreducible, aperiodic chain always exist and do not depend

on the initial state.

3. The limiting probabilities, when they exist, will equal the long-run proportions.

Combining the second and third part of the above theorem, the limiting probabilities of

an irreducible, positive recurrent, aperiodic Markov chain is always the same as the long-run

proportion. In other words, as long as we observe the random process for a long enough period

of time, we will be able to estimate the limiting probabilities be simply computing the long-run

proportion of each state. Such process is said to be ergodic.

De�nition 7. The stochastic process {X(t), t ∈ T } is said to be ergodic if any characteristics

of the process can be obtained, with probability 1, from a single realization.
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