
Applied Stochastic Process
Assignment 1 - Solutions

CHEUNG Ying Lun

11/6/2020

Question 1
Find the value of π through simulation.

To find the value of π, we first note that for a circle with with radius r = 1, its area is Ac = πr2 = π. If we
draw a square which four sides are all tangent to the circle, we get a square with length 2 and area As = 4.

To compute the value of π, we can imagin that we are playing darts, and the dart randomly lands on the
square. The probability that the dart lands on the circle is given by P (within circle) = π/4. Therefore, we
can perform a simulation by drawing the x- and y-axes randomly from the uniform distribution U(−1, 1),
and find the probability

p = P (x2 + y2 ≤ 1) = N−1
N∑

i=1
1(x2

i + y2
i ≤ 1)

where 1(·) is the indicator function. The value of π can be approximated by π ≈ 4p.

To begin with, we clear the environment, set seed and initialize some parameters.
rm(list = ls())
graphics.off()

1

set.seed(916)
NTrial <- 5000

Next, we generate NTrial uniformly distributed xi and yi, which indicate the x- and y-axes of the location
where the i-th dart lands.
X <- runif(NTrial, min = -1, max = 1)
Y <- runif(NTrial, min = -1, max = 1)

Finally, we compute the indicator function and approximate π as discussed above.
g <- (X^2 + Y^2) <= 1
pi_hat <- 4 * mean(g)

We report the approximation result below.
print(paste0("The value of pi_hat is ", pi_hat))

[1] "The value of pi_hat is 3.1168"

print(paste0("The value of pi is ", pi))

[1] "The value of pi is 3.14159265358979"

Question 2
Suppose X ∼ Geo(p) with p = 0.2. Find E[g(X)] through simulation, where

• g(X) = |X|3.

• g(X) = cos(X).

• g(X) = exp(X).

• g(X) = log(X4 +X2)

By the Law of Large Number, expectations can be approximate by the sample mean of independent samples
of the random variable. Therefore, to find E[g(X)], we can generate NTrial random samples of g(X), where
X is random samples of Geo(p). Again, we first clear the environment and set parameters.
rm(list = ls())
set.seed(1625)
NTrial <- 5000
p <- 0.2

Next, we generate random samples X ∼ Geo(p) and perform the respective transformations. Note that in R,
the density function is P (X = x) = p(1− p)x instead of P (X = x) = p(1− p)x−1. In other words, it measures
the number of failures before the first success instead of the number of trials until the first success. Therefore,
we have to add one back if we mean the latter.
X <- rgeom(NTrial, p)+1
g1 <- X^3
g2 <- cos(X)
g3 <- exp(X-1)
g4 <- log(X)

Finally, we can analyze the statistical properties of g(X).
summary(g1)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.0 8.0 64.0 559.6 343.0 68921.0

2

summary(g2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.99996 -0.65364 -0.14550 -0.06817 0.54030 0.98870

summary(g3)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000e+00 3.000e+00 2.000e+01 4.743e+13 4.030e+02 2.354e+17

summary(g4)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.6931 1.3863 1.2518 1.9459 3.7136

Question 3
Let X1, X2, . . . be a sequence of independent Poisson random variables with parameter λ = 0.2.
Let

SN =
N∑

i=1
Xi.

1. Find the mean µN and variance σ2
N of SN when N = 10, 20, 100, 1000.

2. Plot the distribution of σ−1
N (SN − µN) when N = 10, 20, 100, 1000.

To find the mean and variance of SN , we have to generate NTrial samples of SN ., each of which is simply
the sum of N randomly drawn Poisson distributed random variables. Again, we begin with the initialization
of parameters.
rm(list = ls())
NTrial <- 5000
N <- c(10, 20, 100, 1000)
lambda <- 0.2
S <- matrix(nrow = NTrial, ncol = 4)

Next, we generate N Poisson distributed random numbders by rpois(N[i], lambda), calculate their sum
by sum(.), and create NTrial random copies by replicate(.).
for (i in 1:4){

S[,i] <- replicate(NTrial, sum(rpois(N[i], lambda)))
}

We then compute the means and standard deviations of SN as the sample means and sample standard
deviations of each column in S.
(mu <- colMeans(S))

[1] 1.9978 3.9566 19.9538 200.0118

(sigma <- apply(S, 2, sd))

[1] 1.411876 1.952608 4.447429 14.048556

We also plot the histogram of each column in S and compare them with the normal density function. We
observe that as N increases, they fit better, supporting the central limit theorem.
x <- seq(-5, 5, 0.01)
par(mfrow = c(2,2))
for (i in 1:4) {

hist((S[, i] - mu[i]) / sigma[i], freq = FALSE, main = paste0("N = ",N[i]))

3

lines(x, dnorm(x))
}

N = 10

(S[, i] − mu[i])/sigma[i]

D
en

si
ty

−1 0 1 2 3 4 5

0.
0

0.
3

N = 20

(S[, i] − mu[i])/sigma[i]

D
en

si
ty

−2 0 2 4

0.
0

0.
2

0.
4

N = 100

(S[, i] − mu[i])/sigma[i]

D
en

si
ty

−2 0 2 4

0.
0

0.
3

N = 1000

(S[, i] − mu[i])/sigma[i]

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
3

4

	Question 1
	Question 2
	Question 3

