Applied Stochastic Process

Introduction to R

CHEUNG Ying Lun

1 R

R is a language and environment for statistical computing and graphics. It is an integrated suite of
software facilities for data manipulation, calculation and graphical display. You can freely download
R at the CRAN mirror available at https://cran.r-project.org/mirrors.html. In this course, we will be
using RStudio as the integrated development environment (IDE) for R. RStudio is freely available at
https://rstudio.com/products/rstudio/.

Figure 1: Screenshot of RStudio

There are four main windows in RStudio: script editor (top left), console (bottom left), environment (top
right) and plots (bottom right). Usually, we write a script of R codes in the editor, and then run the codes in
the console. When we assign new variables, they will show up in the environment window. If we plot a figure,
it will show up in the plots window.

2 Syntax

When you are not familiar with a function, you can use ? to get the description and the usage of the specific
function. For example, ?sum gets you to the help file of the function sum().

https://cran.r-project.org/mirrors.html
https://rstudio.com/products/rstudio/

2.1 Creating a variable

To assign value to a variable, we can use <- or =. There is a slight difference between the two function: <-
always create a variable or assign the value to the variable in the current environment, while = can also be
used to assign values to input arguments of a function. It is recommended to use <- when creating new
variables or assigning values to a variable. There are several data types in R. Most of the variables we will be
dealing with are either numeric, character or logical.

x <- 100 # Creating a numeric wvariable
s <- "The value of x is" # Creating a string wvariable
b <- FALSE # Creating a logical wvariable
print (paste(s, x)) # Pasting = and s together, and then printing them out

[1] "The value of x is 100"

2.2 Vectors and matrices

The use of vectors and matrices are also very common in R. A vector can be created by the c() function,
while a matrix can be created with the matrix() function. The i-th element of a vector or matrix can be
obtained by the square brackets [J.

v <- c(1, 2, 3)

print (v)

[1] 1 2 3

M1 <- matrix(c(l, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = TRUE)
print (M1)

#i (.11 [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

M2 <- matrix(c(1l, 2, 3, 4, 5, 6), nrow = 2, ncol = 3, byrow = FALSE)
print (M2)

#i# (.11 [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6

Mi[1,]

[1] 123
M2[, 2]

[1] 3 4

A special object in R is list. A list is a generic vector containing other objects. Suppose that 1 is a list
variable, in which the first object contained is v, a vector. Then 1[1] will be a slice of the list, i.e., it returns
a list variable of size one, which contains v in the list. If we want to access v instead, then we have to use
1[[1]], the double squared bracket.

1 = list(v, x, s, b)
1[c(2, 3)]

[[1]]
[1] 100
##

[[2]]

[1] "The value of x is"
1[[1]1]

[1]1 1 2 3
1[[1]1][2]

[1] 2

2.3 Operators
2.3.1 Arithmetic operators

M1 + M2 # Summation

#t [,11 [,2]1 [,3]
[1,] 2 5 8
[2,] 6 9 12

M1 - M2 # Subtraction
#it [,11 [,2]1 [,3]

[1,] 0o -1 -2
[2,] 2 1 0

x * 2 # Multiplication

[1] 200

x / 2 # Division

[1] 50
c(1, 2, 3) = c(3, 2, 1) # Exzponent

[1] 1 4 3
M1 Y% v # Matriz multiplication

[,1]
[1,] 14
[2,] 32

2.3.2 Relatonal operators

M1 > M2 # Larger than

(.11 [,21 [,3]
[1,] FALSE FALSE FALSE
[2,] TRUE TRUE FALSE

M1 < M2 # Smaller than

[,11 [,21 [,3]
[1,] FALSE TRUE TRUE
[2,] FALSE FALSE FALSE

M1 == M2 # Equal to

[,11 [,21 [,3]
[1,] TRUE FALSE FALSE

[2,] FALSE FALSE TRUE
M1 >= M2 # Larger than or equal to

[,11 [,21 [,3]
[1,] TRUE FALSE FALSE
[2,] TRUE TRUE TRUE

M1 <= M2 # Smaller than or equal to

#it [,11 [,2]1 [,3]
[1,] TRUE TRUE TRUE
[2,] FALSE FALSE TRUE

M1 != M2 # Not equal to

#i# [,11 [,21 [,3]
[1,] FALSE TRUE TRUE
[2,] TRUE TRUE FALSE

2.3.3 Logical operators
c(TRUE, FALSE) & c(TRUE, TRUE) # And

[1] TRUE FALSE
c(TRUE, FALSE) | c(TRUE, TRUE) # Or

[1] TRUE TRUE

2.4 Loops
2.4.1 For loop

A For loop is a repetition control structure that allows you to efficiently write a loop that needs to execute a
specific number of times or over a specifc vector.

for (i in seq(from = 1, to = 5, by = 2)) {
print (i)
}

[1] 1
[1] 3
[1] b

In the code above, seq(from = 1, to

= 5, by = 2) creates a vector c(1, 3, 5). The code within the For
loop is executed three times, with i = 1,i = 3 a

nd i = 5 respectively.

2.4.2 While loop

A While loop repeats the code within the loop while the specified condition is satisfied.
i<-1
while(i < 5) {

print(paste("i =", 1i))

i<—-1i+ 2

}

[1] "i = 1"
[1] "i = 3"

2.5 Random variables

The density (or probability mass function), distribution function, quantile function and the random generation
for many standard distributions can be accessed easily with R. The function name follows the syntax ‘Quantity
prefix + Distribution suffix’.

Quantity prefix Meaning
d Density function
P Cumulative distribution function
q Quantile function
r Random number generation
Table 1: Quantity prefix
Distribution suffix Meaning
binom Binomial distribution
pois Poisson distribution
geom Geometric distribution
exp Exponential distribution
norm Normal distribution
unif Uniform distribution

Table 2: Distribution suffix

Before one starts generating random numbers with R, it is good practice to set the seed. Note that the
random numbers generated by R are not really random. They are generated with a set of deterministic
algorithm. Therefore, we can make sure that we get the exact same random numbers every time we run
the codes by specifying the starting point of the algorithm. It can be done by the function set.seed().
Remember that you should set the seed randomly, i.e., you should avoid using set.seed (1) every time.

set.seed(1651)

NTrial <- 1000

X _Unif <- runif(NTrial, min = -1, max = 1)

print(paste("Empirical probability of X < 0 is", sum(X_Unif < 0)/NTrial))

[1] "Empirical probability of X < O is 0.498"
print (paste("Theoretical probability of X < 0 is ", punif(0, min = -1, max = 1)))

[1] "Theoretical probability of X < 0 is 0.5"

2.6 Useful functions

Two functions are very useful for our purpose, simulation. They are replicate() and apply (). The syntax
of replicate() is replicate(n, expr). The function repeatedly evaluates the expression expr for n times
and output the results in a vector or matrix. For example, in the following code, rnorm(10, mean = 2,
sd = 2) creates a vector of ten random numbers, drawn from the normal distribution with both mean and
standard deviation being 2. Therefore, the whole command creates an 10 times NTrial matrix containing
the normally distributed random numbers.

X_Norm <- replicate(NTrial, rnorm(10, mean = 2, sd = 2))

The syntax of apply() is apply(X, MARGIN, FUN). It means that we apply the same function FUN over
the MARGIN-th dimension of X. In the following example, we are applying the function mean() over the 2nd
dimension (i.e., over each column) of X_Norm. In other words, we first get each column out of X. Then, we
apply the function mean() to that column and output the result. Therefore, the result X_bar is a vector of
length NTrial, in which each element in the vector is the mean of the respective column of X_Norm.

X_bar <- apply(X_Norm, 2, mean)

2.7 Plots

The main function for plotting graphs is plot(x, y, ...). Besides the x and y coordinates of points in the
plot, there are many arugments one can pass to the method. One of the most important arguments is type,
which indicates which type of plot should be drawn. For our purpose, the most common types will be p for
points, 1 for lines or b for both. If one want another plot to overlay the existing one, one can use the function
lines(x, y).

Another type of plot we will be using quite often is the histogram, which can be plotted with command
hist(x, ...). Animportant argument is freq, which if set as TRUE, then the histogram shows the frequencies
of the data in each bin. If it is set as FALSE, then the probability density will be plotted, so that the histogram
has a total area of one. An example will be given below.

3 An Example: Law of Large Number and Central Limit Theorem
In this example, we demonstrate convergence in probability and distribution of the sample mean suggested
by the Law of Large Number (LLN) and Central Limit Theorem (CLT), stated as follow:

Theorem 1 Let X1, Xs,..., Xx be a sequence of indpendent random variables with a common distribution
and E(X;) = p for alli. Then, with probability 1,

N
X:N‘lingu as N — oo.
i=1
Theorem 2 Let X1, X5,..., XN be a sequence of indpendent identically distributed random variables with
mean p and variance o for all i. Then as N — oo,

N_l/QiXi_M _ \/N(X_M)

g g

4 N(0,1)

i=1

To begin with, we clear the environment and set the seed.

rm(list = 1s())
set.seed(2243)

To study the LLN and CLT, we let X; id Bin(n,p), i = 1,..., N, and check whether the sample mean
converges to the expected value of X; as N increases. Recall that E(X;) = np and var(X;) = np(1 — p). The
parameters are set as follow:

NTrial <- 1000

N <- c(5, 10, 100, 1000)

n_bin <- 5

p_bin <- 0.4

mu <- n_bin * p_bin

sigma <- sqrt(n_bin * p_bin * (1-p_bin))

After assigning the values of the parameters, we can start our simulation. We first generate an empty matrix
of dimension NTrial times 4. It is used to store the simulated values of X for the NTrial simulations and
for the four different N.

X <- matrix(nrow = NTrial, ncol = 4)

for (i in 1:4){

X[,i] <- replicate(NTrial, mean(rbinom(N[i], n_bin, p_bin)))
}

In the above, mean (rbinom(N[i], n_bin, p_bin)) generates N[i] replicates of X; ud Bin(5,0.4) and take
the sample mean. This expression is repeated NTrial times and the output is a vector of length NTrial. It
is stored in the i-th row of X. X is summarized as follow:

summary (X)

Vi V2 V3 V4

Min. :0.600 Min. :1.000 Min. :1.71 Min. :1.875
1st Qu.:1.600 1st Qu.:1.800 1st Qu.:1.92 1st Qu.:1.978
Median :2.000 Median :2.000 Median :2.00 Median :1.999
Mean :2.023 Mean :2.001 Mean :2.00 Mean :2.001
3rd Qu.:2.400 3rd Qu.:2.200 3rd Qu.:2.08 3rd Qu.:2.024
Max. :3.800 Max. :3.200 Max. :2.31 Max. :2.112

apply(X, 2, sd)

[1] 0.49691759 0.33716891 0.11143578 0.03499827

We can see that both the range and the standard deviation of X shrinks as IV increases. In the last column,
the value of X is between 1.875 and 2.112, very close to the theoretical value 2. The decrease in SD also
demonstrate the LLN. To demonstrate the CLT, we plot the histogram of the scaled value of X.

x <- seq(-5, 5, 0.01)

par (mfrow = c(2,2))

for (i in 1:4) {
hist(sqrt(N[i]) * (X[, i] - mu) / sigma, freq = FALSE, main = pasteO("N = ",N[i]))
lines(x, dnorm(x))

}
N=5 N =10
©
> ° 2 o
@] @]
o] o _|
o [I I I I I I | o [I I I I I
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3
sqgrt(N[i]) * (X[, i] — mu)/sigma sqgrt(N[i]) * (X[, i] — mu)/sigma
N =100 N = 1000

Density
0.0 02 04
Density
0.0 0.2 04

[I I |
-3 -2 -1 O 1 2 3 -4 -2 0 2
sqrt(N[i]) * (X[, i] — mu)/sigma sqrt(N[i]) * (X[, i] — mu)/sigma

The histogram above represents the empirical density of X, while the curve plots the density function of
the standard normal. We see that the empirical density converges to that of the standard normal when N
increases, agreeing with the CLT.

	R
	Syntax
	Creating a variable
	Vectors and matrices
	Operators
	Arithmetic operators
	Relatonal operators
	Logical operators

	Loops
	For loop
	While loop

	Random variables
	Useful functions
	Plots

	An Example: Law of Large Number and Central Limit Theorem

