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Compounding and Log Returns



Effect of compounding 4

Suppose you are going to deposit $10,000 in a bank, which
offers you a 10% per annum interest rate and the following
compounding scheme:

1. Compounding every year, where the one-year interest rate
is 10%;

2. Compounding every 6 months, where the 6-month interest
rate is 10%/2 = 5%.

Which one should you choose?



Effect of compounding 5

Frequency
No. of

payments
Interest rate
per period

Total
value

Annual 1 10% $11000.00
Semiannual 2 5% $11025.00
Quarterly 4 2.5% $11038.13
Monthly 12 0.833% $11047.13
Weekly 52 0.192% $11050.65
Daily 365 0.027% $11051.56

Table: Values of a loan with 10% per annum interest rate



Effect of compounding 6

In general, if the bank gives in-
terest m times a year, you get

$10, 000×
(

1 +
10%

m

)m

.

What if m→∞?



Continuous compounding 7

Suppose the continuously compounded interest rate is r, the
simple gross return, or the effective annual interest rate, is

1 +R = lim
m→∞

(
1 +

r

m

)m
.

Taking logarithm, and by L’Hopital’s Rule

lim
m→∞

m ln
(

1 +
r

m

)
= r.

Therefore, 1 +R = er, or r = ln(1 +R), where r is also called
the log return.



Log returns 8



Log returns 9

I The difference between simple returns and log returns is
small.

I One advantage of using log returns is simplicity of
multi-period returns, which can be written as

1 +Rt(k) =
Pt

Pt−k
=

(
Pt

Pt−1

)
· · ·
(
Pt−k+1

Pt−k

)
= (1 +Rt) · · · (1 +Rt−k+1)

= exp(rt) · · · exp(rt−k+1).

Taking logarithm of both sides,

rt(k) = ln(1 +Rt(k)) = rt + · · ·+ rt−k+1



Efficient Market Hypothesis



Efficient markets 11

An efficient market is one where:

I important current information is almost freely available to
all participants, and

I where there are large numbers of rational,
profit-maximizers actively competing, with each trying to
predict future market values of individual securities.



Forms of efficient markets 12

Weak Today’s stock prices reflect all the information of
past prices.

I No form of technical analysis can be
effectively utilized to aid investors in making
trading decisions.

I Fundamental analysis can be used to
determine undervalued and overvalued stocks
through research on companies’ financial
statements.



Forms of efficient markets 13

Semi-srtong All information that is public is used in the
calculation of a stock’s current price.

I Investors cannot utilize either technical or
fundamental analysis to gain higher returns in
the market.

I Only information that is not readily available
to the public can help investors beat the
market.



Forms of efficient markets 14

Strong All information—both the information available to
the public and any information not publicly
known—is completely accounted for in current
stock prices.

I There is no type of information that can give
an investor an advantage on the market.

I Investors cannot beat the market, regardless of
information retrieved or research conducted.



Forms of efficient markets 15

Weak Today’s stock prices reflect all the information of
past prices.

Semi-srtong All information that is public is used in the
calculation of a stock’s current price.

Strong All information—both the information available to
the public and any information not publicly
known—is completely accounted for in current
stock prices.



Efficient markets 16

An efficient market is one where:

I important current information is almost freely available to
all participants, and

I where there are a large number of rational
profit-maximizers, actively competing with each trying to
predict future market values of individual securities.



Implications of market efficiency 17

I Competition will cause the full effects of new information
on intrinsic values to be reflected instantaneously in actual
prices.

I Due to the vagueness or uncertainty surrounding new
information,
I actual prices will initially over-adjust to changes in intrinsic

values as often as they will under-adjust;
I the lags in the complete adjustment of actual prices to

successive new intrinsic values will be independent.

I The “instantaneous adjustment” property of an efficient
market implies that successive price changes in individual
securities will be independent.



The Random Walk Model



Random walk model 19

Recall that the multi-period returns can be written as

1 +Rt(k) =
Pt

Pt−k
=

(
Pt

Pt−1

)
· · ·
(
Pt−k+1

Pt−k

)
= (1 +Rt) · · · (1 +Rt−k+1)

= exp(rt) · · · exp(rt−k+1).

Taking logarithm of both sides,

rt(k) = ln(1 +Rt(k)) = rt + · · ·+ rt−k+1

where rt are independent over t if the market is efficient and
rt(k) follows a random walk model.



Random Walk 20

Let εt be a white noise process with zero mean and variance σ2,
or εt ∼WN(0, σ2), i.e., for all s, t,

E [εt] = 0, cov(εs, εt) =

{
0, s 6= t

σ2, s = t

The cumulation of εt is called a random walk,

xt = xt−1 + εt = x0 +
t∑

s=1

εs, t = 1, 2, . . .



Random Walk 21

Since εt is a white noise process, the moments of xt can be
obtained easily:

µ = E [xt] = E

[
x0 +

t∑
s=1

εs

]
= x0

σ2t = var(xt) = var

(
x0 +

t∑
s=1

εs

)
= tσ2

Since σ2t increases with t, xt is not stationary.



Wiener Process 22

Define an equidistant, disjoint partition of the continuous time
interval [0, 1]

[0, 1) =

n⋃
i=1

[
i− 1

n
,
i

n

)
Interval-by-interval, define a scaled random walk as a
continuous-time process of step function:

Xn(t) =
1√
n

i−1∑
j=1

εj for t ∈
[
i− 1

n
,
i

n

)
, i = 1, . . . , n.

Define in addition for t = 0 and 1

Xn(0) = 0, Xn(1) =
1√
n

n∑
j=1

εj .



Wiener Process 23

Suppose that σ2 = 1, then by the Central Limit Theorem,

Xn(1) =
1√
n

n∑
j=1

εj
d−→ N (0, 1).

Similarly, for any fixed t ∈ (0, 1), let bxc denotes the largest
integer smaller than or equal to x,

Xn(t) =
1√
n

bntc∑
j=1

εj =

√
t√
nt

btnc∑
j=1

εj
d−→ N (0, t).



Donsker’s Theorem 24

Theorem
Let Sn =

∑n
i=1 εi, εi

iid∼ (0, 1) be a random walk. Define the
re-scaled partial-sum process

Xn(t) =
Sbntc√
n
, t ∈ [0, 1].

Then, the Donsker’s Theorem, or the functional central limit
theorem, states that Xn(t)⇒W (t), t ∈ [0, 1], where W (t) is the
Wiener process.



Wiener Process 25

Definition
A stochastic process W (t), t ∈ [0, T ] is said to be a Wiener
process, or a standard Brownian motion, if:

1. Zero starting value: P (W (0) = 0) = 1;

2. Independent increments: for any 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn,
W (t1)−W (t0), . . . ,W (tn)−W (tn−1) are independent;

3. Stationary increments: W (t+ s)−W (s) ∼ N (0, t) for any
s, t > 0.



Lognormal geometric random walks 26

If the log returns rt
iid∼ N

(
µ, σ2

)
, then

rt(t) = r1 + · · ·+ rt ∼ N (µt, σ2t).

Moreover,
Pt = P0 exp(r1 + · · ·+ rt)

is lognormal since its logarithm is normally distributed.



R Lab



R Lab 28

Use the data set Stock bond.csv to answer the following
questions:

1. Compute the returns and log returns for GM and plot
them against each other.

2. Compute the mean, standard deviation, skewness and
kurtosis of the log returns.

3. Create a QQ plot against (i) the standard normal
distribution, (ii) the t-distribution with degrees of freedom
4, 10 and 30.



Mean 29

The first moment is the mean, which measures the (average)
location of X.

µX = E [X]

The sample mean is

µ̂X =
1

T

T∑
t=1

xt



Variance 30

The second centered moment is the variance, which measures
the dispersion of X around its mean.

σ2X = E
[
(X − µX)2

]
The sample variance is

σ̂2X =
1

T − 1

T∑
t=1

(xt − µ̂X)2



Skewness 31

The third centered moment is skewness, which measures the
degree of asymmetry in the distribution of X.

S(X) = E
[

(X − µX)3

σ3X

]
.

The sample skewness is

Ŝ(X) =
1

T σ̂3X

T∑
t=1

(xt − µ̂X)3.



Skewness 32



Kurtosis 33

The fourth centered moment is kurtosis, which measures the
fatness of the tails of the distribution of X.

K(X) = E
[

(X − µX)4

σ4X

]
The sample kurtosis is

K̂(X) =
1

T σ̂4X

T∑
t=1

(xt − µ̂X)4

Since the kurtosis of the normal distribution is 3, sometimes we
report the excess kurtosis K̂(X)− 3 instead.



QQ plots 34

I A quantile-quantile plot, or a QQ plot, is a plot of the
quantiles of one sample or distribution against the
quantiles of a second sample or distribution.

I The QQ plot is linear if the samples (x-axis) and the
reference (y-axis) share the same distribution, up to a shift
and scaling.



QQ plots 35

Left skewed Right skewed

Heavy tail Light tail



t-distribution 36
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