

Financial Modeling and Data Analysis Portfolio Selection

CHEUNG Ying Lun
Capital University of Economics and Business

Outline

Risk-Return Trade-off

One Risky Asset and One Risk-free Asset

Two Risky Assets

Two risky assets + One risk-free asset

N Risky Assets

R Lab

Risk-Return Trade-off

Two principles of investment:

- 1. maximize the expected return;
- 2. minimize the risk (standard deviation of the return).

Usually, higher returns entail higher risks. Is there any optimal compromise between expected return and risk?

Two principles of investment:

- 1. maximize the expected return;
- 2. minimize the risk (standard deviation of the return).

Usually, higher returns entail higher risks. Is there any optimal compromise between expected return and risk?

Answer: Yes (In a mean-variance sense)!

One Risky Asset and One Risk-free Asset

Consider the following two assets:

- A risky asset with expected returns $\mathbb{E}[R] = \mu_1$ and variance $var(R) = \sigma_1^2$.
- ightharpoonup A risk-free asset with a fixed return R_f .

If we invest a fraction w of our wealth in the risky asset and the remaining fraction 1-w in the risk-free asset, what are the expected value and standard deviation of the portfolio return?

Consider the following two assets:

- A risky asset with expected returns $\mathbb{E}[R] = \mu_1$ and variance $var(R) = \sigma_1^2$.
- ightharpoonup A risk-free asset with a fixed return R_f .

If we invest a fraction w of our wealth in the risky asset and the remaining fraction 1-w in the risk-free asset, what are the expected value and standard deviation of the portfolio return?

Answer:
$$\mu_p = \mathbb{E}[R_p] = w\mu_1 + (1 - w)R_f, \ \sigma_p = |w|\sigma_1.$$

Example

Suppose the expected return of a risky asset is 15% and the standard deviation of the return is 25%. Assume also that the risk-free rate is 6%.

- ▶ If a portfolio is formed with w = 0.6 of the risky asset and 1 w = 0.4 of the risk-free asset, what are the expected value and standard deviation of the portfolio return?
- ▶ If the investor wants to fix the standard deviation of the return at 20%, how should you allocate the fund in the portfolio?
- ▶ Is it possible to achieve an expected return of 19.5%?

Solution

- The expected value is $\mu_p = wR_1 + (1-w)R_f = 11.4\%$ and the standard deviation is $\sigma_p = |w|\sigma_1 = 15\%$.
- $\sigma_p = |w|\sigma_1 = 0.25|w| = 0.2 \implies w = 0.8.$
- ▶ $\mu_p = wR_1 + (1-w)R_f = 0.15w + 0.06(1-w) = 0.195 \implies w = 1.5 > 1$. Therefore, it is only possible if **short selling** is allowed.

$\overline{w_1}$	$1 - w_1$	μ_p	σ_p
1	1	6%	0%
0.5	0.5	10.5%	12.5%
1	0	15%	25%
1.5	-0.5	19.5%	37.5%
-0.5	1.5	1.5%	12.5%

Table: Portfolio risk and returns

Two Risky Assets

Suppose now that there are two risky assets:

- Asset 1: $\mathbb{E}[R_1] = \mu_1$ and $\operatorname{var}(R_1) = \sigma_1^2$;
- Asset 2: $\mathbb{E}[R_2] = \mu_2$ and $\operatorname{var}(R_2) = \sigma_2^2$;
- Correlation between the returns of the two assets $corr(R_1, R_2) = \rho_{12}$.

If we allocate w_1 and $w_2 = 1 - w_1$ of our wealth in the two risky assets respectively, what are the expected value and standard deviation of the portfolio returns?

Suppose now that there are two risky assets:

- Asset 1: $\mathbb{E}[R_1] = \mu_1$ and $\operatorname{var}(R_1) = \sigma_1^2$;
- Asset 2: $\mathbb{E}[R_2] = \mu_2$ and $\operatorname{var}(R_2) = \sigma_2^2$;
- Correlation between the returns of the two assets $corr(R_1, R_2) = \rho_{12}$.

If we allocate w_1 and $w_2 = 1 - w_1$ of our wealth in the two risky assets respectively, what are the expected value and standard deviation of the portfolio returns?

Answer:
$$\mu_p = \mathbb{E}[R_p] = w_1 \mu_1 + (1 - w_1) \mu_2;$$

 $\sigma_p = \sqrt{w_1^2 \sigma_1^2 + (1 - w_1)^2 \sigma_2^2 + 2w_1 (1 - w_1) \rho_{12} \sigma_1 \sigma_2}.$

Exercise

Find w_1 of the minimum variance portfolio.

Exercise

Find w_1 of the minimum variance portfolio.

Solution

We minimize σ_p^2 with respect to w_1 . Taking derivative of σ_p^2 with respect to w_1 ,

$$\frac{\mathrm{d}\sigma_p^2}{\mathrm{d}w_1} = 2\sigma_1^2 w_1 - 2\sigma_2^2 (1 - w_1) + (2 - 4w_1)\rho_{12}\sigma_1\sigma_2 \stackrel{!}{=} 0.$$

Solving for w_1 yields

$$w_1^* = \frac{\sigma_2^2 - \rho_{12}\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2 - 2\rho_{12}\sigma_1\sigma_2}.$$

- ▶ If $\rho_{12} > 0$, the two assets tend to move together which increases the volatility of the portfolio.
- ▶ If $\rho_{12} < 0$, a bad performance of one tends to occur with a good performance of the other, so the volatility of the portfolio decreases.

Two risky assets + One risk-free asset

► Given two risky assets, we should choose a *mean-variance* efficient portfolio on the efficient frontier.

- ► Given two risky assets, we should choose a *mean-variance* efficient portfolio on the efficient frontier.
- ▶ Given one more risk-free asset, and if we choose one of the efficient portfolio by fixing w_1 , we return to the problem of "one risky asset and one risk-free asset".

- ► Given two risky assets, we should choose a *mean-variance* efficient portfolio on the efficient frontier.
- ▶ Given one more risk-free asset, and if we choose one of the efficient portfolio by fixing w_1 , we return to the problem of "one risky asset and one risk-free asset".
- ▶ Which efficient portfolio should we choose?

- ► Given two risky assets, we should choose a *mean-variance* efficient portfolio on the efficient frontier.
- ▶ Given one more risk-free asset, and if we choose one of the efficient portfolio by fixing w_1 , we return to the problem of "one risky asset and one risk-free asset".
- ▶ Which efficient portfolio should we choose?

Answer: The one with the highest Sharpe's ratio

$$\frac{\mathbb{E}\left[R_p\right] - R_f}{\sigma_p}.$$

The optimal or efficient portfolios mix the tangency portfolio with the risk-free asset. Each efficient portfolio has two properties:

- ▶ it has a higher expected return than any other portfolio with the same or smaller risk, and
- ▶ it has a smaller risk than any other portfolio with the same or higher expected return.

Let $V_1 = \mu_1 - R_f$ and $V_2 = \mu_2 - R_f$ be the excess expected returns, then we can show that the tangency portfolio uses weight

$$w_1^* = \frac{V_1 \sigma_2^2 - V_2 \rho_{12} \sigma_1 \sigma_2}{V_1 \sigma_2^2 + V_2 \sigma_1^2 - (V_1 + V_2) \rho_{12} \sigma_1 \sigma_2}.$$

The efficient portfolios are combinations of the tangency portfolio and the risk-free asset. The expected returns and standard deviation of any efficient portfolio are given by:

$$\mu_p = R_f + w(\mu_{tan} - R_f)$$
$$\sigma_p = w\sigma_{tan}$$

- ▶ If $\rho_{12} > 0$, the two assets tend to move together which increases the volatility of the portfolio.
- ▶ If $\rho_{12} < 0$, a bad performance of one tends to occur with a good performance of the other, so the volatility of the portfolio decreases.

N Risky Assets

Suppose there are N risky assets with returns

$$\mathbf{R} = \begin{pmatrix} R_1 \\ \vdots \\ R_N \end{pmatrix}.$$

The expected value and covariance matrix of \mathbf{R} are

$$\mu = \mathbb{E}\left[\mathbf{R}\right] = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_N \end{pmatrix} \qquad \mathbf{\Sigma} = \operatorname{cov}(\mathbf{R}) = \begin{pmatrix} \sigma_1^2 & \dots & \sigma_{1N} \\ \vdots & \ddots & \vdots \\ \sigma_{N_1}^2 & \dots & \sigma_{N_N}^2 \end{pmatrix}.$$

Let $\mathbf{w}^{\intercal} = (w_1, \dots, w_N)$ be the vector of portfolio weights.

- 1. What condition must **w** satisfy?
- 2. What is the expected value and variance of the portfolio return?

Let $\mathbf{w}^{\intercal} = (w_1, \dots, w_N)$ be the vector of portfolio weights.

- 1. What condition must **w** satisfy?
- 2. What is the expected value and variance of the portfolio return?

Answer:

- 1. The vector of portfolio weights must satisfy $\mathbf{1}^{\mathsf{T}}\mathbf{w} = \sum_{i=1}^{N} w_i = 1.$
- 2. The expected value is $\mu_p = \mathbf{w}^{\mathsf{T}} \boldsymbol{\mu} = \sum_{i=1}^{N} w_i \mu_i$. The variance is $\sigma_p^2 = \mathbf{w}^{\mathsf{T}} \boldsymbol{\Sigma} \mathbf{w}$.

The expected return is

$$\mu_p = \mathbf{w}^\mathsf{T} \boldsymbol{\mu} = \begin{pmatrix} w_1 & w_2 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = w_1 \mu_1 + w_2 \mu_2.$$

The expected return is

$$\mu_p = \mathbf{w}^{\mathsf{T}} \boldsymbol{\mu} = \begin{pmatrix} w_1 & w_2 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = w_1 \mu_1 + w_2 \mu_2.$$

The variance of the portfolio return is

$$\sigma_p^2 = \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}$$

$$= \begin{pmatrix} w_1 & w_2 \end{pmatrix} \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

$$= w_1^2 \sigma_1^2 + 2w_1 w_2 \sigma_{12} + w_2^2 \sigma_2^2.$$

How to find the efficient portfolio?

- ▶ For $N \ge 3$, there will be an infinite number of portfolios that can achieve a target return μ_p .
- ► The one with the smallest variance is called the "efficient" portfolio.

How to find the efficient portfolio?

- ▶ For $N \ge 3$, there will be an infinite number of portfolios that can achieve a target return μ_p .
- ► The one with the smallest variance is called the "efficient" portfolio.
- ► For a given μ_p , an efficient portfolio is one with weights \mathbf{w} such that \mathbf{w} minimizes $\sigma_p^2 = \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}$, subject to $\mathbf{w}^{\mathsf{T}} \boldsymbol{\mu} = \mu_p$ and $\mathbf{w}^{\mathsf{T}} \mathbf{1} = 1$.

How to find the efficient portfolio?

- ▶ For $N \ge 3$, there will be an infinite number of portfolios that can achieve a target return μ_p .
- ► The one with the smallest variance is called the "efficient" portfolio.
- For a given μ_p , an efficient portfolio is one with weights \mathbf{w} such that \mathbf{w} minimizes $\sigma_p^2 = \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}$, subject to $\mathbf{w}^{\mathsf{T}} \boldsymbol{\mu} = \mu_p$ and $\mathbf{w}^{\mathsf{T}} \mathbf{1} = 1$.
- ► The set of efficient portfolios with different target returns form the efficient frontier.

To find the efficient frontier, for each μ_p , we solve the optimization problem

$$\min f(x) := \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}$$

subject to

$$\mathbf{1}^{\mathsf{T}}\mathbf{w} = 1$$

 $\boldsymbol{\mu}^{\mathsf{T}}\mathbf{w} = \mu_p$

A Quadratic Programming (QP) problem is an optimization problem with the following form:

$$\min f(\mathbf{x}) := \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{D} \mathbf{x} - \mathbf{d}^{\mathsf{T}} \mathbf{x}$$

subject to

$$\mathbf{A}_{\mathrm{neq}}^\intercal \mathbf{x} \ge \mathbf{b}_{\mathrm{neq}}$$

 $\mathbf{A}_{\mathrm{eq}}^\intercal \mathbf{x} = \mathbf{b}_{\mathrm{eq}}$

Our problem of finding an efficient portfolio is a QP problem. The cost function is given by setting

- $\mathbf{x} = \mathbf{w}$
- ightharpoonup $\mathbf{D} = 2\mathbf{\Sigma}$
- ightharpoonup d = 0

The constraint is given by defining

$$\mathbf{A}_{\mathrm{eq}}^{\mathsf{T}} = \begin{pmatrix} \mathbf{1}^{\mathsf{T}} \\ \boldsymbol{\mu}^{\mathsf{T}} \end{pmatrix}, \qquad \mathbf{b}_{\mathrm{eq}} = \begin{pmatrix} 1 \\ \mu_p \end{pmatrix}.$$

Additional constraints can be imposed if needed:

- ▶ No-short-sell constraint: $\mathbf{w} \ge \mathbf{0}$.
- ▶ To avoid concentration, an investor may wish to constrain the portfolio so that no w_i exceeds a bound λ . In this case, $\mathbf{w} \leq \lambda \mathbf{1}$, or equivalently $-\mathbf{w} \geq -\lambda \mathbf{1}$.

Additional constraints can be imposed if needed:

- ▶ No-short-sell constraint: $\mathbf{w} \ge \mathbf{0}$.
- ▶ To avoid concentration, an investor may wish to constrain the portfolio so that no w_i exceeds a bound λ . In this case, $\mathbf{w} \leq \lambda \mathbf{1}$, or equivalently $-\mathbf{w} \geq -\lambda \mathbf{1}$.

Combining both, we get

$$\mathbf{A}_{\mathrm{neq}}^\intercal = egin{pmatrix} \mathbf{I} \ -\mathbf{I} \end{pmatrix}, \qquad \mathbf{b}_{\mathrm{neq}} = egin{pmatrix} \mathbf{0} \ -\lambda \mathbf{1} \end{pmatrix}.$$

Combining both constraints, the optimization problem becomes

$$\min f(x) := \mathbf{w}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{w}$$

subject to

$$\begin{pmatrix} \mathbf{I} \\ -\mathbf{I} \end{pmatrix} \mathbf{w} \ge \begin{pmatrix} \mathbf{0} \\ -\lambda \mathbf{1} \end{pmatrix}$$
 and $\begin{pmatrix} \mathbf{1}^{\mathsf{T}} \\ \boldsymbol{\mu}^{\mathsf{T}} \end{pmatrix} \mathbf{w} = \begin{pmatrix} 1 \\ \mu_p \end{pmatrix}$.

- ightharpoonup Given N risky assets, we should choose a mean-variance efficient portfolio on the efficient frontier.
- ▶ Given one more risk-free asset, we can combine it with one of the efficient portfolios.
- ▶ Which efficient portfolio should we choose?

- ightharpoonup Given N risky assets, we should choose a mean-variance efficient portfolio on the efficient frontier.
- ▶ Given one more risk-free asset, we can combine it with one of the efficient portfolios.
- ▶ Which efficient portfolio should we choose?

Answer: The one with the highest Sharpe's ratio

$$\frac{\mathbb{E}\left[R_p\right] - R_f}{\sigma_p}.$$

R Lab

Use the data set Stock_bond.csv to answer the following questions:

- 1. Compute the returns for GM, F, CAT, UTX, MRK and IBM and plot the scatter plots for each stock-pair.
- 2. Compute their means, standard deviations, covariance matrix and correlation matrix.
- 3. Suppose you can only invest in GM and one more stock.
 - 3.1 Create the efficient frontier with the two stocks and find the minimum variance portfolio.
 - 3.2 Which firm pair can create an MVP with the smallest variance?

- 4. Assume the annual risk-free rate is 3%. Find the efficient frontier, the tangency portfolio, and the minimum variance portfolio. What are the Sharpe ratios of the two portfolios?
- 5. If an investor wants an expected daily return of 0.07%, how should the investor allocate his or her capital to the six stocks and to the risk-free asset?
- 6. Repeat the above analysis with the following constraints:
 - ▶ Short-selling constraint: $w_i \ge 0$ for all j.
 - ▶ Short-selling and diversification constraint: $-0.1 \le w_j \le 0.5$ for all j.