

Financial Modeling and Data Analysis Arbitrage Pricing Theory and Factor Models

CHEUNG Ying Lun
Capital University of Economics and Business

Outline

APT: Assumptions

Factor Models Diversification

Arbitrage

APT: Implications

R Lab

APT: Assumptions

- 1. Security returns can be described by a factor model.
- 2. There are sufficient securities to diversify away firm-specific risk.
- 3. The security market does not allow for the persistence of arbitrage opportunities.

- 1. Security returns can be described by a factor model.
- 2. There are sufficient securities to diversify away firm-specific risk.
- **3.** The security market does not allow for the persistence of arbitrage opportunities.

The CAPM predicts that

$$\mu_i - R_f = \beta_i (\mu_M - R_f).$$

Let $r_i = R_i - R_f$ and $r_M = R_M - R_f$,

$$r_i = \beta_i r_M + e_i, \qquad \mathbb{E}\left[e_i\right] = 0,$$

where $\beta_i r_M$ represents the *systematic* part, and e_i represents the *firm-specific* part.

Let $F = r_M$, CAPM can be written as a single-factor model

$$r_i = \beta_i F + e_i$$

where

- \triangleright F is the common risk factor; and
- \triangleright β_i is the sensitivity of asset *i* to the factor, also called factor loadings.

APT postulates that the (excess) return of any asset follows a K-factor model

$$r_i = \mathbb{E}\left[r_i\right] + \beta_{i,1}F_1 + \dots + \beta_{i,K}F_K + e_i,$$

where

- $\blacktriangleright \mathbb{E}[F_1] = \dots = \mathbb{E}[F_K] = \mathbb{E}[e_i] = 0.$
- $ightharpoonup \cot(e_i, F_k) = 0 \text{ for all } k.$
- ► The risk factors themselves, and the firm-specific shocks for different stocks, may be correlated.

Factor model 9

Examples of factors include:

- 1. returns on the market index;
- 2. growth rate of the GDP;
- 3. inflation rate or changes in this rate;
- 4. interest rate spread;
- 5. return on some portfolio of stocks, for example, all stocks with a high ratio of book equity to market equity;
- 6. the difference between the returns on two portfolios, for example, stocks with high and low BE/ME values.

- 1. Security returns can be described by a factor model.
- 2. There are sufficient securities to diversify away firm-specific risk.
- **3.** The security market does not allow for the persistence of arbitrage opportunities.

Suppose there is only one factor, and let F be the deviation from its mean. Then, the excess return on an N-asset portfolio is

$$r_p = \mathbb{E}\left[r_p\right] + \beta_p F + e_p$$

where

Suppose there is only one factor, and let F be the deviation from its mean. Then, the excess return on an N-asset portfolio is

$$r_p = \mathbb{E}\left[r_p\right] + \beta_p F + e_p$$

where

$$\beta_p = \sum_{i=1}^{N} w_i \beta_i, \qquad \mathbb{E}\left[r_p\right] = \sum_{i=1}^{N} w_i \mathbb{E}\left[r_i\right]$$

and

$$e_p = \sum_{i=1}^{N} w_i e_i.$$

Since F and e_i are not correlated,

$$\sigma_p^2 = \beta_p^2 \sigma_F^2 + \sigma^2(e_p),$$

where σ_F^2 is the variance of the factor F and $\sigma^2(e_p)$ is the non-systematic variance of the portfolio

Since F and e_i are not correlated,

$$\sigma_p^2 = \beta_p^2 \sigma_F^2 + \sigma^2(e_p),$$

where σ_F^2 is the variance of the factor F and $\sigma^2(e_p)$ is the non-systematic variance of the portfolio

$$\sigma^2(e_p) = \sum_{i=1}^N w_i^2 \sigma_i^2,$$

assuming that the firm-specific e_i are also uncorrelated.

▶ If the portfolio were equally weighted, then

▶ If the portfolio were equally weighted, then

$$\sigma^2(e_p) = \sum_{i=1}^N w_i^2 \sigma_i^2 = \sum_{i=1}^N \left(\frac{1}{N}\right)^2 \sigma_i^2$$
$$= \frac{1}{N} \left[\frac{1}{N} \sum_{i=1}^N \sigma_i^2\right] = \frac{1}{N} \overline{\sigma}^2(e_i).$$

Therefore, $\sigma^2(e_p) \to 0$ as $N \to \infty$.

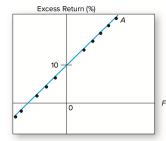
• We define a well-diversified portfolio as one with $\sigma^2(e_p) \to 0$.

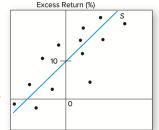
Example

Suppose that the firm-specific risk of each risky asset is finite and uncorrelated with each other. Show that an N-asset portfolio with positive weights $w_i > 0$ is well-diversified if each weight approaches zero as N increases.

Since the mean and variance of the firm-specific risk of a well-diversified portfolio are both (close to) zero, any realized value of e_p will be virtually zero. Therefore, we can write

$$r_p = \mathbb{E}\left[r_p\right] + \beta_p F.$$





- 1. Security returns can be described by a factor model.
- 2. There are sufficient securities to diversify away firm-specific risk.
- 3. The security market does not allow for the persistence of arbitrage opportunities.

▶ The Law of One Price states that if two assets are equivalent in all economically relevant respects, then they should have the same market price.

- ▶ The Law of One Price states that if two assets are equivalent in all economically relevant respects, then they should have the same market price.
- ► Enormous profit can be reaped by *long-short positions* if the Law of One Price is violated.

- ► The Law of One Price states that if two assets are equivalent in all economically relevant respects, then they should have the same market price.
- ► Enormous profit can be reaped by *long-short positions* if the Law of One Price is violated.
- ▶ Market prices will move to rule out arbitrage opportunities.

If there is an arbitrage opportunity in the market, an investor can construct an arbitrage portfolio to earn risk-free returns. An arbitrage portfolio needs to satisfy the following conditions:

- ightharpoonup Zero net investment: $w_1 + \cdots + w_N = 0$.
- ightharpoonup Zero betas: $w_1\beta_{1,k} + \cdots + w_N\beta_{N,k} = 0$ for all k.
- ▶ Positive returns: $w_1\mathbb{E}[R_1] + \cdots + w_N\mathbb{E}[R_N] > 0$.

The arbitrage portfolio is usually formed with well-diversified portfolios such that it is completely risk-free.

Example

Suppose the return of any asset in the market follows a one-factor model. Consider the expected returns and betas of the following three well-diversified portfolios:

Portfolio	μ_i (%)	β_i
1	15	0.9
2	21	3.0
3	12	1.8

Construct an arbitrage portfolio.

APT: Implications

▶ All well-diversified portfolios with the same beta must have the same expected returns.

- ▶ All well-diversified portfolios with the same beta must have the same expected returns.
- ▶ Their risk premiums must be proportional to beta.

- ▶ All well-diversified portfolios with the same beta must have the same expected returns.
- ▶ Their risk premiums must be proportional to beta.
- ▶ Since all well-diversified portfolios are perfectly correlated with the factor, if a market index portfolio is well diversified, its return will perfectly reflect the value of the factor.

- ▶ All well-diversified portfolios with the same beta must have the same expected returns.
- ▶ Their risk premiums must be proportional to beta.
- ▶ Since all well-diversified portfolios are perfectly correlated with the factor, if a market index portfolio is well diversified, its return will perfectly reflect the value of the factor.
- ► For any well-diversified portfolio, the expected excess return must be

$$\mathbb{E}\left[r_p\right] = \beta_p \mathbb{E}\left[r_M\right].$$

► The single-factor model can be generalized to a multi-factor model

$$r_i = \mathbb{E}\left[r_i\right] + \sum_{k=1}^K \beta_{i,k} F_k + e_i.$$

► The single-factor model can be generalized to a multi-factor model

$$r_i = \mathbb{E}\left[r_i\right] + \sum_{k=1}^K \beta_{i,k} F_k + e_i.$$

▶ A well-diversified portfolio constructed to have a beta of 1 on one of the factors and a beta of zero on any other factor is called a *factor portfolio*, or a *tracking portfolio*.

► The single-factor model can be generalized to a multi-factor model

$$r_i = \mathbb{E}\left[r_i\right] + \sum_{k=1}^K \beta_{i,k} F_k + e_i.$$

- ▶ A well-diversified portfolio constructed to have a beta of 1 on one of the factors and a beta of zero on any other factor is called a *factor portfolio*, or a *tracking portfolio*.
- ▶ Let f_k be the excess return on the tracking portfolio of the k-th factor, then

$$\mathbb{E}\left[r_{i}\right] = \sum_{k=1}^{K} \beta_{i,k} \mathbb{E}\left[f_{k}\right].$$

Exercise

Suppose the security returns in a market can be described by a two-factor model. Let r_1 and r_2 be the excess returns of two well-diversified portfolios. Construct the factor portfolios with the two well-diversified portfolios.

- ► Risk-return dominance:
 - ▶ When an equilibrium price relationship is violated, many investors will make *limited* portfolio changes.
 - ▶ Aggregation of a large number of these changes is required to restore equilibrium prices.

- ▶ Risk-return dominance:
 - ▶ When an equilibrium price relationship is violated, many investors will make *limited* portfolio changes.
 - ▶ Aggregation of a large number of these changes is required to restore equilibrium prices.
- ► Arbitrage
 - ► Each investor wants to take as large a position as possible.
 - ► It will not take many investors to bring about the price pressures necessary to restore equilibrium

Advantages of APT:

- Only a limited number of investors are needed to restore any disequilibrium.
- ► The assumption that a rational capital market will preclude arbitrage opportunities is plausible.
- ▶ A well-diversified index portfolio, instead of the impossible-to-observe market portfolio of all assets, can suffice for the APT.

Disadvantages of APT:

- ► APT does not imply that the expected return—beta relationship hold for all assets.
- ► Even large portfolios may have non-negligible residual risk, i.e., not well-diversified.

R Lab

There are three ways of fitting factor models:

- 1. Time series factor models
- 2. Cross-sectional factor models
- 3. Statistical factor models

Suppose the excess return of an asset follows a K-factor model

$$r_i = \mathbb{E}\left[r_i\right] + \sum_{k=1}^K \beta_{i,k} F_k + e_i.$$

Then, let f_k be the excess returns of a factor portfolio, we can estimate a K-index model by regression

$$r_{it} = \beta_{0,i} + \sum_{k=1}^{K} \beta_{i,k} f_{kt} + e_{it}.$$

Fama and French have developed a fundamental factor model with three risk factors:

$$r_i = \beta_{0,i} + \beta_{1,i}r_M + \beta_{2,i}SMB + \beta_{3,i}HML + e_i$$

where

- $ightharpoonup R_M R_f$: the excess market return
- ► SMB: the size factor
- ► HML: the value factor

To estimate the betas, we can run the following regression

$$r_{i,t} = \beta_{0,i} + \beta_{1,i}r_{M,t} + \beta_{2,i}SMB_t + \beta_{3,i}HML_t + e_{i,t}$$

where

- $ightharpoonup r_{M,t}$: the excess return of the market index
- ➤ SMB: the difference in returns on a portfolio of small stocks and a portfolio of large stocks
- ▶ HML: the difference in returns on a portfolio of high book-to-market value (BE/ME) stocks and a portfolio of low BE/ME stocks

In matrix form, the vector of N asset returns follows

$$\mathbf{R} = \boldsymbol{\beta}_0 + \mathbf{B}^{\mathsf{T}} \mathbf{F} + \mathbf{e}.$$

Their expectations and covariance matrix are

$$\mu = oldsymbol{eta}_0 + \mathbf{B}^\intercal oldsymbol{\mu}_{\mathbf{F}}, \qquad oldsymbol{\Sigma} = \mathbf{B}^\intercal oldsymbol{\Sigma}_{\mathbf{F}} \mathbf{B} + oldsymbol{\Sigma}_{\mathbf{e}},$$

where

$$\mathbf{B} = (\boldsymbol{\beta}_1 \quad \dots \quad \boldsymbol{\beta}_N)$$

and
$$\boldsymbol{\beta}_i^{\mathsf{T}} = (\beta_{1,i}, \dots, \beta_{K,i}).$$

- ▶ Many economically relevant variables are not time-series data
- ► Examples:
 - dividend yields
 - ▶ book-to-market ratio
 - ▶ industry
- ▶ Estimate a cross-sectional factor model:

$$R_i = \beta_0 + \beta_1 \operatorname{tech}_i + \beta_2 \operatorname{oil}_i + e_i.$$

- ► Time-series factor model:
 - ▶ One estimates parameters, one asset at a time, using multiple holding periods.
 - ► The factors are directly measured and the loadings are the unknown parameters to be estimated by regression.
- Cross-sectional factor model:
 - ▶ One estimates parameters, one single holding period at a time, using multiple assets.
 - ► The loadings are directly measured and the factor values are estimated by regression.

If neither the factor values nor the loadings are directly observable, one can still employ a statistical factor model:

$$\mathbf{R}_t = \boldsymbol{\beta}_0 + \mathbf{B}^{\mathsf{T}} \mathbf{F}_t + \mathbf{e}_t$$

where

$$\Sigma_{\mathbf{R}} = \mathbf{B}^{\intercal} \Sigma_{\mathbf{F}} \mathbf{B} + \Sigma_{\mathbf{e}}.$$

Only \mathbf{R}_t is observed, and so only $\mathbf{\Sigma}_{\mathbf{R}}$ can be directly estimated.

ightharpoonup Identification problem in a statistical factor model: For any invertible matrix \mathbf{Q} ,

$$\mathbf{B}^{\intercal}\mathbf{F}_{t} = \mathbf{B}^{\intercal}\mathbf{Q}^{-1}\mathbf{Q}\mathbf{F}_{t}.$$

The model is only identifiable up to a nonsingular linear transformation.

ightharpoonup Identification problem in a statistical factor model: For any invertible matrix \mathbf{Q} ,

$$\mathbf{B}^{\intercal}\mathbf{F}_{t} = \mathbf{B}^{\intercal}\mathbf{Q}^{-1}\mathbf{Q}\mathbf{F}_{t}.$$

The model is only identifiable up to a nonsingular linear transformation.

- ► A set of constraints is needed to identify the parameters, e.g.,
 - $ightharpoonup \Sigma_{\mathbf{F}} = \mathbf{I}$.
 - ▶ $\mathbf{B}\mathbf{\Sigma}_{\mathbf{e}}^{-1}\mathbf{B}^{\intercal}$ is diagonal.
 - ▶ Varimax rotations: make each loading either small or large by maximizing the sum of the variances of the squared loadings.

